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Introduction 

Neuronal communication is most often characterized by a rapid transfer of information 

between two cells, beginning with the generation and conduction of an electrical 

impulse in the presynaptic cell, leading up to a release of chemical messengers that 

traverse the synaptic cleft, and finally culminating with a direct inhibition or excitation 

of the postsynaptic cell, the activity of which, in turn, is effectively determined by a 

simple summation of such signals.  There exists, however, another form of 

communication between neurons, one that is often relatively understated and involves 

not the simple and direct activation of membrane ion channels but rather the activation 

of elaborate cell signaling pathways, that is equally central to the normal functioning of 

neural circuits.  This type of communication, termed neuromodulation, usually involves 

the activation of G-protein coupled receptors and their associated intracellular signaling 

cascades rather than the activation of ligand-gated ion channels.  Thus, 

neuromodulatory communication results in a wider range of effects that are generally 

slower-acting and longer-lasting.  This type of signaling, which occurs at every level of 

the nervous system and shares many of the same chemical messengers with the primary 

or traditional method of neuronal communication, allows a neuron or neural circuit to 

take on multiple functional roles such that one type of stimulus may elicit a number of 

different responses that depend on the state of the neuron, circuit, or animal.   

 Because the information-processing capacity of an animal’s brain emerges from 

the combination and interaction of both traditional neurotransmission and 

neuromodulation, an artificial emulation of such a structure for the purpose of data 

processing should reasonably also involve both modes of communication.  Artificial 
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neural networks (ANNs), which are inspired by their biological counterparts, are 

computational constructs used for a large variety of computing tasks.  For a number of 

reasons, including practicality, functionality, and the inherent differences between the 

biological and digital domains, the extent of biological influence on ANNs is 

unsurprisingly limited, and many aspects of biological networks, including 

neuromodulation, are omitted from implementations of ANNs.  However, because 

neuromodulation is not a simple or minor enhancement of network function, but is 

rather an essential component of normal operation, its incorporation into ANNs may 

impart substantial benefits.  Neuromodulation in ANNs, for example, may increase 

network robustness or solution evolvability, as has been demonstrated by a small 

number of implementations reviewed here.   The purpose of this work is to illustrate 

ways in which neuromodulation may take place in artificial networks by extracting the 

fundamental attributes of the biological process and transferring them to an artificial 

setting.  Because biological and artificial networks are essentially distinct, each 

possessing unique capabilities and constraints, a direct transfer of the neuromodulatory 

process between the two domains would be impractical.  Corollaries of ideas presented 

here will not necessarily exist in biology, nor would all or even most biological 

neuromodulatory mechanisms, systems, or effects be entirely imitable in a digital 

setting.  Furthermore, there may arise adverse effects from the introduction of 

neuromodulation to ANNs that are unanticipated due to the fundamental ways in which 

they differ from biological networks.  For example, neuromodulation may cause 

instability by altering or interfering with a network’s basic mode of function.  Also, an 

excessive number of network components resulting from the addition of an extra 
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signaling system may complicate network training or evolution.  Therefore, 

implementations of neuromodulation should include some level of control over this 

added signaling system as well as adhere to simplicity in design, which is one of the 

most crucial aspects of ANNs. 

 The contents of this work are as follows.  Chapter one presents the concept of 

neuromodulation in biological systems.  The primary mechanisms and functional 

consequences of neuromodulation at different levels are demonstrated through various 

examples.  Chapter two provides a basic overview of ANNs.  Chapter three reviews 

existing implementations of ANNs that include a neuromodulatory system.  The design 

details and functional significance of each implementation are presented.  Chapter four 

illustrates additional ways in which the process of neuromodulation may be 

incorporated into ANNs. 
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Chapter 1: Biological neurotransmission and neuromodulation 

 

1. Overview of neural communication 

A biological neuron is a cell that is specialized for information transmission, 

structurally characterized by extensions from the main cell body called axons and 

dendrites
 
(Purves et al. 2008, p. 1-22).  Typically, incoming information is received at 

multiple dendrites and outgoing signals are dispatched from a single axon
 
(Purves et al. 

2008, p. 1-22).  Signals are electrochemical: neurons accumulate negative charge on the 

inside by maintaining specific ion gradients across the cell membrane, allowing signals 

to travel rapidly through the neuron in the form of an electric current
 
(Purves et al. 

2008, p. 41-60).  Communication between a neuron and its target is usually chemical, 

involving the release of neurotransmitters (NTs)
 
(Purves et al. 2008, p. 85-118).   

The firing of a neuron begins with a positive change (depolarization) in the 

neuron’s membrane potential triggered by a change in the flow of certain ions across the 

cell membrane
 
(Purves et al. 2008, p. 25-39).  Depolarization above a threshold value 

leads to the generation of an action potential (AP), a wave of depolarizations propagated 

down the length of the axon
 
(Purves et al. 2008, p. 41-60).  The terminal end of an axon 

contains vesicles containing NTs and Ca
2+

 channels that open in response to 

depolarization (Purves et al. 2008, p. 85-118).  The AP opens these channels, and Ca
2+

 

influx mediates the fusion of the vesicles to the cell membrane, releasing their contents
 

(Purves et al. 2008, p. 85-118).  NTs diffuse across the synapse and are received by 

receptor proteins in the postsynaptic cell, triggering a wide range of possible responses
 

(Purves et al. 2008, p. 85-118).  Even though it is common to categorize a NT as either 
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predominately excitatory or inhibitory, it is the identity of the receptor that ultimately 

determines the effects of the NT
 
(Purves et al. 2008, p. 119-152). 

Receptors can simply be transmembrane proteins that open after the binding of a 

NT.  These ion channels, called ionotropic receptors (Trimmer 1999), will increase the 

permeability of certain ions (and thus raise or lower the membrane potential), directly 

altering the likelihood of AP generation.  Activated receptors can also invoke other 

kinds of responses within the cell.  These receptors, called metabotropic receptors
 

(Trimmer 1999), activate molecules called G-proteins that set off long cascades of 

intracellular signals, which, in turn, can alter membrane permeability directly or give 

rise to more long-lasting changes.  These long-lasting changes, termed neuromodulation 

(Katz 1999), are essential for continual adaptation to the environment and are the focus 

of the remainder of this chapter. 

 

2. Neuromodulation 

The term neuromodulation will be used here to describe a certain variety of changes that 

a neuron undergoes as a result of communication with another neuron.  These changes 

are set apart from those often described in simplified or classical views of 

neurotransmission, in which the rapid fluctuations in cell membrane potential, mediated 

primarily by ionotropic receptors, are underscored
 
(Katz 1999; Trimmer 1999).  

Neuromodulatory communication, on the other hand, alters longer-lasting properties of 

the neuron that can affect future signaling events.  Neuromodulatory effects often 

emerge later and last longer than those of neurotransmission due to the biochemical 

cascades activated by metabotropic receptors.   
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 Metabotropic receptors are coupled to molecules known as G-proteins, which 

are activated when the receptor binds a NT.  An activated G-protein can either directly 

interact with ion channels
 
(Purves et al. 2008, p. 85-118) or activate effector enzymes 

(such as adenylyl cyclase, guanylyl cyclase, and phospholipase C)
 
(Purves et al. 2008, 

p. 153-176), which in turn produce molecules called second messengers.  Common 

examples of second messengers include cyclic nucleotides (cAMP and cGMP), Ca
2+

, 

diacylglycerol, and inositol triphosphate
 
(Purves et al. 2008, p. 153-176).  Targets of 

second messengers are most commonly enzymes called kinases and phosphatases that 

add and remove phosphate groups from their substrates, respectively
 
(Purves et al. 

2008, p. 153-176).  Many proteins, including those associated with ion channels and ion 

channels themselves, can be regulated by the activity of these enzymes
 
(Jonas and 

Kaczmarek 1999).  Consequently, the long-term effects of neuromodulators are 

primarily attributed to the activity of the proteins activated by second messengers.  The 

following sections will describe some of the molecular mechanisms of neuromodulation 

and the effects of neuromodulatory communication on local cell behavior and global 

circuit function. 

 

2.1 Molecular mechanisms of neuromodulation 

 

2.1.1 Ion channels 

Ion channels are proteins that span the cell membrane and allow the passage of certain 

ions.  The behavior of a neuron is shaped by the flow of ions (see section 2.2) and 

principally altered by the modulation of ion channels via the activity of various kinases 
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(such as those activated by the biochemical cascades described above).  

Phosphorylation may directly or indirectly modulate ion channels, subsequently altering 

the ion currents they mediate.  This phenomenon has been widely studied and reviewed 

(Swope et al. 1992; Levitan 1994; Ismailov and Benos 1995; Swope et al. 1999). 

In a cell, the total current mediated by a single type of ion channel may be 

represented by I = nPi, where n is the number of active membrane channels, P is the 

probability that a channel is open, and i is the current of a single channel.  Thus, ion 

channel phosphorylation may theoretically modulate ion currents by altering any of 

these variables
 
(Levitan 1985).  A number of underlying biophysical mechanisms that 

can produce such changes have been reported in studies of both ligand-gated channels 

(ionotropic receptors) and voltage-gated channels (which activate in response to 

changes in membrane potential).  Examples of these mechanisms include changes in 

desensitization rates (Downing and Role 1987; Schmidt et al. 1994; Hinkle and 

Macdonald 2003), activation of silent membrane channels
 
(Margiotta et al. 1987; 

Vijayaraghavan et al. 1990), regulation of channel trafficking (Lan et al. 2001; Wang et 

al. 2003; Misonou et al. 2004)
 
or subunit assembly

 
(Ross et al. 1991), and changes in 

voltage dependence (Reinhart et al. 1991; England et al. 1996; Fitzgerald et al. 1999; 

Park et al. 2006) or various gating kinetics (Numann et al. 1991; Covarrubias et al. 

1994; Roeper et al. 1997; Chen et al. 2006).  

  Long-term modulation of ion currents can occur through changes in the 

transcription of ion channel genes.  Second messenger cascades can relay signals to the 

nucleus of the cell to promote RNA synthesis by activating transcription factors 

(proteins that bind to DNA and enable transcription).  The creation of new ion channels 
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(and other nuclear signaling events in general) results in relatively long-lasting changes 

in the behavior of the neuron.      

 

2.1.2 Neurotransmitter release  

Neuron function may also be modulated presynaptically by controlling the release of 

NTs.  Vesicle exocytosis can be regulated directly.  The parts of the exocytotic 

machinery that may be targeted (by kinases, for example) for modulation include fusion 

proteins on the vesicles and cell membrane, the protein that detects Ca
2+

, proteins 

involved in the linking of Ca
2+

 channels to vesicles, and proteins involved in vesicle 

trafficking
 
(Miller 1998; Jonas and Kaczmarek 1999).  Because exocytosis is dependent 

upon Ca
2+ 

influx into the axon terminal, NT release can also be modulated through the 

regulation of Ca
2+ 

levels and dynamics.  Certainly, Ca
2+

 currents may be regulated by 

modulating Ca
2+

 channels.  Ca
2+

 channel modulation by various mechanisms, such as 

G-protein activation, and its effects on Ca
2+

 currents and neuron function, including NT 

release, has been reviewed (Dolphin 1990; Miller 1990; Numann et al. 1991).  The 

inhibition of Ca
2+

 currents leads to a decrease of NT release and presynaptic inhibition, 

which can be demonstrated by the concurrent reduction of Ca
2+

 influx and synaptic 

transmission following the activation of the metabotropic receptors of various NTs such 

as GABA (Isaacson 1998), glutamate
 
(Takahashi et al. 1996), and acetylcholine (ACh)

 

(Qian and Saggau 1997).  Ca
2+

 influx may also be attenuated in a less straightforward 

manner.  The depolarization propagated by an AP that opens terminal voltage-gated 

Ca
2+

 channels may be countered by altering the conductance of other ions (such as K
+
) 
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such that the cell is repolarized and Ca
2+

 currents are reduced
 
(Miller 1990; Miller 

1998).   

 

2.2 Cellular effects of neuromodulation 

Neurons show a diverse range of intrinsic firing patterns, and these are subject to 

regulation by ion channel modulation.  While some neurons fire a single AP following 

depolarization, others can exhibit bursting activity in which APs are fired in rapid 

succession in between periods of silence
 
(Izhikevich 2000).  Furthermore, many neurons 

can also display spontaneous firing activity in the absence of stimuli
 
(Marder and 

Calabrese 1996).  The state of a neuron (i.e., whether it is at rest or firing) at any 

moment depends on its membrane potential, and its behavior over time is determined by 

changes in the membrane potential resulting from the modulation of ion currents.  A 

single neuron may simultaneously express different types of ion channels on its surface 

(e.g., Na
+
, K

+
, Cl

-
, Ca

2+
, and nonspecific cation channels), including a number of varied 

subtypes, which are exquisitely regulated to produce a wide variety of firing patterns.  

Modulation may also occur presynaptically via the alteration of Ca
2+

 currents, resulting 

in the facilitation or depression of NT release and altering the degree to which the 

postsynaptic element is excited or inhibited.    

 Several neural systems in the well-studied marine mollusk Aplysia serve to 

illustrate the cellular effects of both postsynaptic and presynaptic neuromodulation.  

Firstly, the neuromodulator serotonin (5-HT) has been shown to have complicated 

effects on the endogenously (spontaneously) bursting neuron R15.  Via the cAMP 

pathway, low concentrations of 5-HT acts to eliminate bursting
 
(Drummond et al. 1980) 
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by enhancing an inward K
+
 current

 
(Benson and Levitan 1983) (which hyperpolarizes 

the cell), while at higher concentrations, 5-HT enhances the AP frequency during bursts 

and eventually induces a tonically firing state (in which the neuron fires single spikes 

periodically) by increasing an inward Ca
2+

 current (which enhances depolarization) in 

addition to the K
+
 current

 
(Levitan and Levitan 1988).  R15 modulation shows that one 

neuromodulator can have opposing, concentration-dependent effects on firing activity.    

Secondly, studies of the accessory radula closer (ARC) muscle illustrate that 

neuromodulators can work in concert (here, by adjusting opposing currents) to produce 

the range of contractions necessary for a complex motor behavior.  Note that this is an 

example of neuromodulation in non-neuronal excitable cells.  The ARC muscle, which 

is involved in feeding, is innervated by two neurons that release several distinct classes 

of neuromodulators together with ACh (which induces muscle contractions)
 
(Cropper et 

al. 1987).  Additional neuromodulators are released from other neurons in the network
 

(Cropper et al. 1994).  Acting through second messengers, neuromodulators both 

enhance and depress contractions by increasing Ca
2+

 influx
 
(Brezina et al. 1994b) and 

activating K
+
 channels

 
(Brezina et al. 1994a), respectively.  Furthermore, the motor 

neurons may be inhibited presynaptically by modulating the release of ACh (Cropper et 

al. 1988).   

 Finally, both long- and short-term presynaptic modulation resulting in the 

facilitation of NT release is demonstrated by the gill and siphon withdrawal reflex 

(GSWR), in which a touch to the siphon results in gill withdrawal.  The GSWR can be 

sensitized for a short period of time by applying a noxious stimulus elsewhere on the 

body
 
(Pinsker et al. 1970; Kandel and Schwartz 1982), and long-term sensitization can 
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occur following repeated applications of noxious stimuli
 
(Pinsker et al. 1973).  Short-

term sensitization is attributed to the release of 5-HT from interneurons upon noxious 

stimulation, triggering the suppression of K
+
 channels in siphon sensory neurons via a 

cAMP cascade and, in turn, an increase in Ca
2+

 influx and NT release
 
(Kandel and 

Schwartz 1982).  The same cAMP pathway, initiated by 5-HT, leads to long-term 

sensitization by signaling to the nucleus to stimulate protein synthesis by activating 

transcription factors
 
(Dash et al. 1990).   

   

2.3 Functional significance of neuromodulation 

From sensory receptors to neuromuscular junctions, neuromodulators can target 

essentially any type of synapse in the nervous system, effecting the continuous changes 

necessary for normal function.  Neuromodulation can alter the response of primary 

sensory neurons to both external and internal stimuli, the generation of motor patterns 

by lower central circuits and motor circuits, and numerous facets of brain function.   

 

2.3.1 Neuromodulation of sensory systems 

Sensory receptors transduce chemical, mechanical, light, and other types of stimuli into 

electrochemical signals that can propagate through the rest of the nervous system.  The 

sensitivity to stimuli of a sensory neuron is commonly increased as a result of 

neuromodulation.  For example, the release of 5-HT from interneurons results in the 

sensitization of siphon mechanoreceptors in Aplysia (see section 2.2).  Recently, this 

type of sensitization in Aplysia was observed to be elicited by a naturally occurring 

stimulus (an attack by the spiny lobster Panulirus interruptus), suggesting that this 
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phenomenon may be an adaption to prevent subsequent predatory attacks
 
(Watkins et al. 

2010).   

 Another example of increased receptor sensitivity is the sensitization of 

nociceptors (pain receptors) that follows tissue injury.  Nociceptor sensitization is a 

result of the release of inflammatory mediators and neuromodulators such as 5-HT, 

leading to hyperalgesia (an increased response to pain), which probably serves as a 

protective mechanism to avoid further damage and promote wound healing
 
(Treede et 

al. 1992).  Hyperalgesia can also be induced centrally by the neuromodulator-induced 

sensitization of secondary sensory neurons that synapse with nociceptors in the spinal 

cord
 
(Schaible et al. 2002).   

 Neuromodulation can also heighten sensitivity to other kinds of environmental 

stimuli, such as odor.  For example, octopamine (OA), an insect neuromodulator, has 

been shown to increase sensitivity to pheromones in various species of moths (Linn and 

Roelofs 1986; Pophof 2000; Grosmaitre et al. 2001).  There is evidence that OA may do 

so by acting directly on olfactory receptor neurons, either by directly increasing 

receptor sensitivity
 
(Pophof 2000), or possibly by modifying the adaptation state of the 

receptor (i.e., reversing receptor desensitization)
 
(Grosmaitre et al. 2001).   

 Sensitivity to internal stimuli may also be modulated.  For example, in the locust 

Locusta migratoria, the response of forewing stretch receptors, which are connected to 

neurons involved in flight rhythm generation and are involved in the control of the 

wing-beat frequency, is increased by OA, which is released during the onset of flight
 

(Ramirez and Orchard 1990).  Here, the neuromodulation of a sensory receptor has 

direct consequences on motor behavior. 
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2.3.2 Neuromodulation of motor systems 

Animals perform a full spectrum of behaviors using many different sets of motor 

patterns that, owing to neuromodulation, do not necessarily require a large number of 

neurons organized in extensive networks.  Studies of central pattern generators (CPGs) 

provide perhaps the best understood effects of neuromodulation of motor behavior.  

CPGs are usually central circuits that drive motor neurons to produce rhythmic patterns 

and are capable of sustaining these patterns without sensory feedback.   

A system that is classically used to illustrate neuromodulation in CPGs is the 

crustacean stomatogastric nervous system (STNS).  The STNS is composed of four 

CPGs that produce four distinct rhythms involved in the grinding and filtering of food 

in the crustacean stomach
 
(Marder and Bucher 2007).  Neuromodulation has a number 

of well-characterized effects on this system.  Although distinct neurons have been 

identified as belonging to specific CPGs, some may switch between different CPGs as a 

result of neuromodulatory input
 
(Hooper et al. 1990; Weimann et al. 1991).  

Furthermore, two whole CPGs can be merged to produce a new rhythm distinct from 

the patterns produced by either of the original CPGs
 
(Dickinson et al. 1990).  Finally, 

neuromodulators can even construct a new network by selecting specific components 

from existing CPGs
 
(Meyrand et al. 1991).  In this system, a functional (rather than an 

anatomical) rewiring of network components by weakening or strengthening specific 

synapses dramatically demonstrates the flexible nature of motor networks.    

Neuromodulation can also temporarily transform a non-rhythmic network into a 

CPG.  For example, in the marine mollusk Tritonia, one network underlies reflexive 
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withdrawal as well as crawling, both of which are non-rhythmic behaviors
 
(Popescu and 

Frost 2002).  However, when presented with an aversive stimulus, the network is 

transformed, via the action of 5-HT, into a CPG that produces the patterns necessary for 

escape swimming
 
(Katz et al. 1994; Frost et al. 2001).     

 

2.3.3 Neuromodulation of brain function 

The large variety of psychoactive drugs that target neuromodulatory pathways reflect 

the important functions of neuromodulation in the mammalian brain.  The primary 

neuromodulators in the brain, dopamine (DA), norepinephrine (NE), 5-HT, histamine, 

and ACh, all have anatomically distinct pathways and play characteristic roles in greatly 

diverse aspects of brain function.  Some of these aspects include sleep and arousal, 

attention and alertness, various kinds of learning and synaptic plasticity, memory, 

cognition, stress and anxiety, motor activity, consciousness, mood, spirituality, general 

mental state, and a number of neurological disorders such as Parkinson’s disease, 

Alzheimer’s disease, and schizophrenia
 
(Smythies 2005).   

An example of one of the many crucial functions of neuromodulation comes 

from the regulation of the gating of sensory information.  Almost all inputs received 

from sensory systems converge in the thalamus, which filters and relays the information 

to the cerebral cortex.  It is necessary to differentially process sensory input depending 

on the state of an organism.  For example, responsiveness to outside stimuli is decreased 

during sleep compared to the waking state, and the modulation of thalamocortical 

neurons is thought to be critically involved in the switching between these states
 

(McCormick 1992; McCormick and Bal 1997).  In these neurons, the transition from 
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the rhythmic bursts that characterize slow-wave sleep to the more rapid, tonic firing that 

characterizes rapid eye movement sleep and the waking state follows the release of 

ACh, NE, histamine, glutamate, and possibly other modulatory substances from other 

parts of the brain, and correlates with an increase in the responsiveness of the thalamus 

to input from the sensory periphery
 
(McCormick 1992; McCormick and Bal 1997).   

Another example of a critical process that may be regulated by neuromodulation 

is synaptic plasticity, which is the inherent ability of synaptic strength to change 

according to synaptic activity.  Perhaps the most widely studied component of synaptic 

plasticity is long-term potentiation (LTP), which is characterized by a persistent 

increase in synaptic strength and has long been a prominent candidate for the cellular 

basis of learning and memory.  Therefore, the neuromodulation of LTP has the 

consequence of affecting the degree to which information is acquired and stored.  In the 

hippocampus (a region of the brain associated with memory processing), for instance, a 

number of neuromodulators such as ACh (Huerta and Lisman 1993), NE
 
(Izumi and 

Zorumski 1999), and DA (Otmakhova and Lisman 1996) have been shown to promote 

LTP.  It may be beneficial to enhance learning and memory formation in certain 

circumstances.  For example, in the rat hippocampus, a DA-dependent enhancement of 

LTP was observed following exposure to a novel environment
 
(Li et al. 2003). 

 

2.4 Regulation of neuromodulation 

The previous sections have detailed the ways in which classical neurotransmission may 

be modulated.  The ways in which these neuromodulatory processes are regulated are 

relatively less well known.  However, the modulation of neuromodulatory neurons by 
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other neuromodulatory neurons has been characterized.  This phenomenon, in which the 

primary neuromodulatory neurons that modulate classical neurotransmission are 

targeted by other (second-order) neuromodulatory neurons, has been termed 

metamodulation 
(Katz and Edwards 1999).  Metamodulation may occur in a serial 

fashion (e.g., when a neuromodulatory neuron is directly activated by another 

neuromodulatory neuron) or in an indirect or convergent fashion, in which the 

effectiveness of the primary neuron is altered (Katz and Edwards 1999).  The latter may 

occur in several ways.  Second-order neurons may indirectly modulate primary neurons 

by altering their output (e.g., by modulating the amount or type of substance released), 

the responsiveness of the postsynaptic element (e.g., by desensitizing metabotropic 

receptors of targets of primary neurons), or the concentration of neuromodulators within 

the synaptic cleft released by primary neurons (e.g., by modulating reuptake 

transporters or acting on degradative enzymes that remove NTs from the synapse)
 
(Katz 

and Edwards 1999).  These events are accomplished by some of the same mechanisms 

used in primary neuromodulation. 

 

3. Summary 

The classical story of neurotransmission is conveyed by the fast excitatory and 

inhibitory communications that are predominately mediated by ionotropic receptors.  

Neuromodulation, characterized by its regulatory effects and a slow time course of 

action, plays an equally essential role in neuronal communication.  At the molecular 

level, neuromodulatory substances such as 5-HT, DA, NE, and ACh activate 

metabotropic receptors, setting off a series of G-protein-mediated events within the cell 



17 

that eventually affects the phosphorylation states of ion channels or various aspects of 

vesicle exocytosis and NT release.  On a cell-wide level, postsynaptic modulation alters 

a neuron’s firing pattern, while presynaptic modulation alters the amount of NT 

released to impact synaptic strength.  Functionally, neuromodulation augments network 

flexibility and seemingly reduces complexity by imparting a one-to-many 

correspondence between input and output.  Broadly speaking, the behavior of a neuron 

or network that is under the influence of neuromodulators depends not only on the 

eliciting stimulus but also on the current state of the organism.  Finally, in addition to 

granting flexibility to all components of a nervous system, neuromodulators can serve a 

higher regulatory function as regulators of neuromodulation itself. 
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Chapter 2: Artificial neural networks 

 

1. Introduction 

Artificial neural networks (ANNs) are parallel computational tools inspired by the 

processing capabilities of animal brains.  Biological neurons work together 

simultaneously and continuously to process an abundance of information.  This type of 

parallel processing is emulated by ANNs, which are composed of simple, 

interconnected individual processing units called neurons or nodes that form larger, 

complex processing systems
 
(Gurney 1997).  Like neurons in a brain, these simple 

processing elements function independently but work simultaneously to detect patterns 

in data.  Furthermore, connections between nodes have variable synaptic strengths 

called weights 
(Gurney 1997).  Essentially, an ANN is a pattern detection system in 

which specific input-output mappings are encapsulated in its weights.  Brains exhibit 

synaptic plasticity, or the capacity to perpetually adjust synaptic strength in response to 

changes in the environment, which allows for the acquisition and storage of 

information.  This type of plasticity also occurs in an analogous fashion in ANNs.  

ANNs learn specific models of data by undergoing a training phase in which example 

problems are presented and a training algorithm is used to search for appropriate 

weights.  Because models are learned without explicit programming, extensive prior 

knowledge of the data is not necessarily required.  The simple design of ANNs makes 

them widely applicable in data processing and modeling
 
(Gurney 1997; Rabuñal and 

Dorado 2006). 
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 The following sections will briefly describe the basic elements and operation of 

ANNs.  Evolutionary techniques for training ANNs and the use of ANNs in robotics 

will also be discussed, as the subsequent chapter is concerned with these topics.   

 

2. Artificial neurons 

The neuron is the basic processing element in a neural network.  Like the biological 

neuron upon which it is based, an artificial neuron (fig. 1) integrates input signals and 

transmits the information to other neurons.  However, the similarities are essentially 

limited to this overly simplified view of neurotransmission.  Biological 

neurotransmission involves chemical messengers, receptor proteins, ion channels, and 

an enormous array of intracellular processes.  Thus, the flow and nature of information 

is more difficult to understand and not easily predictable.  Information transfer between 

artificial neurons is much more direct. An artificial neuron receives one or more inputs, 

sums them, and then passes the sum of its inputs through an activation function to 

compute one output
 
(Gurney 1997).  Activation functions are commonly nonlinear, 

bounded, and sigmoidal
 
(Dreyfus 2005).  A commonly used activation function is the 

logistic function: f(x) = (1/(1+e-x
)).  The connections between neurons are not uniform 

but have associated weights that determine the strength of the connection between two 

neurons.  Connection weights are used to compute the weighted sum of inputs that is 

passed to the activation function
 
(Gurney 1997).  Commonly, thresholds are set by 

inputs from bias neurons that transmit constant values with associated bias weights
 

(Dreyfus 2005).    
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Figure 1. Artificial neuron.  This neuron has n inputs.  The parameter passed to the 

activation function f is a weighted sum: x0w0 + x1w1 + ... + xnwn, where xi is the ith
 input 

to the neuron and wi is the weight of the connection between input i and the neuron.  

The output is then passed to all neurons that have an incoming connection from this 

neuron. 

 

 Because each neuron is basically a nonlinear function, a connected network is a 

composition of many nonlinear functions that form a system capable of representing 

nonlinear, diverse, and complex mappings.   

 

3. Network structures 

There are many ways in which neurons can be connected to each other in a network, 

and a network can take on many different configurations.  In general, network 

topologies fall into two main classes: feedforward networks and recurrent (or feedback) 

networks.  A feedforward network is an acyclic network in which information only 

flows in one direction
 
(Gurney 1997).  This kind of network is a direct function of its 

inputs, since no internal states can be stored.  Usually, these networks are graphically 

represented by layers, beginning with an input layer and ending with an output layer.  

Any layers in between are termed hidden layers.  Each layer receives input from the 
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immediately previous layer and transmits to the next layer.  Recurrent networks, on the 

other hand, have at least one cycle or loop
 
(Gurney 1997).  A neuron’s output may then 

be fed back into the network as input.  The output depends not only on the given input 

but also on the network’s internal state.  Because of feedback connections, recurrent 

networks are dynamic and can exhibit complicated behaviors.   

There are many different types of networks within these two main classes.  

Networks may take on a number of different configurations.  For example, networks do 

not necessarily have to be arranged in layers.  It is also not necessary for networks to be 

fully connected, and the pruning of connections (when prior knowledge of the problem 

allows for it) may allow for more efficient learning
 
(Rabuñal and Dorado 2006).  

 

4. Learning 

Neural networks must be trained to embody a desired input-output mapping.  Training 

involves the implementation of some learning algorithm that will search for suitable 

network parameters that will allow the network to produce some desired output.  The 

adaptable parameters are most often the connection weights, which are adjusted within 

the training algorithm.  In instances where correct output values are given to the 

network, an algorithm computes the error between network output and desired output 

and attempts to minimize this error by continually adjusting the weights according to 

some predefined update rule.  The error is calculated by comparing the target value and 

the actual output given by the network and is then used to adjust the weights. The goal 

of training is to gradually minimize the error as training progresses.  This type of 

training is known as supervised learning
 
(Hassoun 1995), since the desired output is 
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known and used for comparison.  There is a type of learning in which exact desired 

outputs are not provided, but feedback from the environment still exists
 
(Hassoun 

1995).  In reinforcement learning, qualitative signals conveying the desirability of an 

output are presented to the network, which subsequently learns by attempting to 

maximize a reward function.  This kind of learning is comparable to some types of 

associative learning in animals, such as operant conditioning.  Learning may also be 

unsupervised.  In this case, the desired output is not presented to the network
 
(Hassoun 

1995).  In these cases, the network must find patterns present in the input data in the 

absence of environmental feedback, and weights must be adjusted using rules that do 

not rely on error values.  An example of such an update rule is the Hebbian learning rule
 

(Hassoun 1995).  Here, the weight between two nodes is adjusted according to their 

simultaneous activation, much like the Hebbian plasticity that occurs at biological 

synapses. 

 

5. Evolutionary algorithms and evolutionary robotics 

A commonly used algorithm for training neural networks (and other types of search 

problems) is a class of algorithms based on Darwinian evolution and selection.  

Evolutionary algorithms (EAs) evolve populations of solutions to search and 

optimization problems
 
(Bäck et al. 2000), such as finding optimal neural network 

weights.  In genetic algorithms (GAs)
 
(Holland 1975), a frequently used subclass of 

EAs, solutions are represented as a string of numbers.  For example, in the case of 

neural network training, these numbers may be weights.  Each individual solution 

competes with the rest of the population to create offspring solutions for the next 
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generation.  Each solution is evaluated over a given period of time (i.e., its lifetime) by 

a fitness function that calculates how successfully the problem of interest was solved, 

and solutions with higher fitnesses are more likely to be selected to reproduce for the 

next generation.  In reproduction, crossover between parent solutions, in which parts 

from each parent solution are used to create new solutions, and mutation of solutions 

(i.e., random changes in solution strings) are implemented to introduce population 

variation.   

 Of particular concern to systems discussed in the next chapter is the application 

of EAs in the development of autonomous robots, which are robots that can adapt to 

changes in the environment without outside guidance.  Typically, such robots are 

assigned relatively simple tasks (e.g., maze navigation or locomotion) that require them 

to adaptively interact with the environment to handle various challenges (e.g., obstacle 

avoidance or maintaining balance in unsteady terrains).  In evolutionary robotics, EAs 

are used to create robot control systems, which are often ANNs
 
(Nolfi and Floreano 

2000).  Considering the functions of their biological counterpart, it seems natural to 

employ ANNs as robot neurocontrollers, which represent low-level mappings of 

sensory input to motor output.  Common targets of evolution in neurocontrollers include 

connection weights and network structure.  

 

6. Summary 

Biological brains have inspired a class of computational systems to perform complex, 

nonlinear mappings.  ANNs may be trained by a variety of methods that are 

traditionally categorized based on the amount of feedback or guidance received from 
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the learning environment.  Evolutionary computing techniques, such as GAs, use 

concepts from biological evolution and selection to search for solutions to optimization 

problems, such as finding suitable weights in a neural network.  ANNs are widely 

applicable in many scientific fields, but the next chapter largely focuses on their role in 

evolutionary robotics, a field that uses evolutionary computation to develop 

autonomous robotic agents.     



25 

Chapter 3: Review of neuromodulation in artificial neural networks 

 

1. Introduction 

A crucial component of biological networks that is conspicuously absent in most 

implementations of artificial neural networks (ANNs) is neuromodulation, a major 

aspect of neuronal communication that is as fundamental to biological networks as 

classical neurotransmission.  Since simplicity is an important attribute of ANNs, and 

tasks that they are designed to accomplish are relatively simple, an attempt to build 

them progressively more similar to animal brains would be an undesirable (and 

formidable) endeavor.  However, functional benefits can conceivably arise in 

neuromodulated ANNs without significant sacrifices in simplicity.  Furthermore, as is 

the case in biological systems, neuromodulation may actually allow more simplicity in 

network design than a functionally equivalent network that is not neuromodulated. 

  The following sections provide a review of ANNs that include a 

neuromodulatory component.  For each system, a general description of the network 

architecture and the neuromodulatory mechanism will be given, followed by notable 

experiments in which they were investigated.  This chapter concludes with comments 

concerning the nature and possible functional roles of neuromodulation in ANNs.   

 

2. Neuromodulation in literature 

 



26 

2.1 GasNets 

GasNets are neuromodulated networks based on nitric oxide (NO) signaling
 
(Garthwaite 

and Boulton 1995).  NO is a gaseous, non-traditional signaling molecule used by the 

nervous system in nonsynaptic neurotransmission and neuromodulation.  NO differs 

from traditional signaling molecules because it is a membrane-permeant molecule that 

freely diffuses from a cell to multiple targets
 
(Garthwaite and Boulton 1995).  GasNets 

are unconventional networks that operate on a two-dimensional (2D) plane.  Instead of 

incorporating direct, point-to-point links between nodes, network connections are 

determined by positive and negative circle segments that are associated with each node.  

Two nodes are linked if one node resides within the segment of the other, and the type 

of segment (positive or negative) determines the type of connection (excitatory or 

inhibitory).  This arrangement facilitates the diffusion of modulatory signals: each node 

emits, under a predefined condition, zero or one of a number of distinct and diffusible 

“gases” (neuromodulators) that disperses radially on the 2D plane according to a 

mathematical model.  If a node emits a gas, it will do so either due to an activity 

threshold or a gas concentration threshold.  The type of gas each node may emit, the 

conditions for emission from each node, various properties of diffusion (such as the rate 

of decay), and network topology are all evolved.  The transfer function of each node is 

subject to continuous gaseous modulation according to the type of gas and its 

concentration. 

 Two types of GasNets with two different transfer functions have been 

developed.  One type of GasNet uses four distinct gases, and another type uses two 

gases.  In the former version, the transfer function contains two variables that are 
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modifiable by the gases, while the transfer function in latter version contains one 

variable that is modifiable.  

 GasNets were implemented in robot controllers given various tasks such as T-

maze navigation
 
(Husbands 1998), in which the robot must decide the correct direction 

to turn at the T-junction of a T-shaped maze based on a light signal coming from either 

side of the junction, and target discrimination
 
(Husbands et al. 1998a; Husbands et al. 

1998b), in which the robot must move towards one of two shapes attached to a wall.  In 

both groups of experiments, GasNets were found to be more evolvable than 

conventional networks that lacked gas diffusion.  That is, evolution found successful 

solutions faster when GasNets were in use.  Furthermore, evolved GasNet controllers 

were generally simpler in design than conventional networks.  In the latter set of 

experiments, GasNets were also found to be more evolvable than the same type of 2D 

network in which gases were removed
 
(Husbands et al. 1998a; Husbands et al. 1998b).  

Furthermore, the two types of GasNets (using four and two gases) produced similarly 

successful results
 
(Husbands et al. 1998b), further suggesting that the process of 

gaseous modulation itself, rather than a particular type of network or transfer function, 

was responsible for increasing the rate of successful evolution.  The authors have noted 

that the heterogeneity of the networks emerging from variation amongst transfer 

functions is important for successful performance.  In instances in which gases did not 

evolve
 
(Husbands 1998)

 
or modulation was turned off

 
(Husbands 1998a), fairly 

successful networks shared the common feature of heterogeneity.  GasNets have also 

demonstrated success in the more complex robotic task of legged locomotion.  GasNet 

controllers achieved the highest fitness out of more than a dozen types and variants of 
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dynamic recurrent networks in a simulated bipedal locomotion experiment
 
(McHale and 

Husbands 2004a).  In a related study of quadrupedal locomotion, GasNets were 

compared to two other recurrent networks
 
(McHale and Husbands 2004b).  Here, 

although simulated robots controlled by GasNets displayed more stable gaits, another 

type of network achieved similarly high fitness values.  These results suggest that the 

nature of the problem or task is an important factor in evaluating or comparing the 

success of different networks.  

Finally, several variations of GasNets have shown increased performance 

compared to traditional GasNets.  In traditional GasNets, single nodes release 

modulators with corresponding non-uniform concentration distributions centered on the 

releasing node.  One alternate GasNet version was based on the dynamics of NO release 

in certain areas of the brain in which the subthreshold concentrations of NO released by 

individual nerve fibers in a plexus sum to above-threshold levels some distance away 

from the cell bodies
 
(Philippides and Husbands 2005).  In this plexus GasNet model, 

concentration distributions are uniform and may center away from the releasing node.  

Another version was based on biological receptor proteins (Philippides and Husbands 

2005).  In this receptor GasNet model, nodes only respond to modulation if receptors 

are present, and only one gas with a single modulatory effect was used.  The intensity of 

a modulatory signal depends on the gas concentration as well as the amount of receptors 

present.  In a target discrimination task (as described above), both models were found to 

be more evolvable than a traditional GasNet, and receptor GasNet solutions evolved 

considerably faster than plexus GasNet solutions
 
(Philippides and Husbands 2005).  

Another GasNet variant, termed a non-spatial GasNet (NSGasNet), does not operate on 
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a coordinate plane
 
(Vargas et al. 2007).  Instead, every node in the network is subject to 

modulation by every gas-emitting node depending on an evolvable parameter (termed 

modulator bias) that determines the intensity of modulation.  Each node has a 

modulator bias associated with every gas-emitting node in the network.  In a simple 

central pattern generator (CPG) task
 
(Vargas et al. 2007), in which networks were 

evolved to cyclically generate a particular bit sequence (mimicking a sort of CPG), 

NSGasNets were shown to be more evolvable than traditional GasNets.  Furthermore, 

the number of evolved successful NSGasNets was greater than that of traditional 

GasNets.   However, in a more complex, delayed response task
 
(Vargas et al. 2008) 

(similar to the T-maze task described above), although evolution found a greater 

number of successful NSGasNets than traditional GasNets, the speed of evolution was 

comparable between the two models.  These results suggest that the success of GasNets 

may not hinge on a spatial model of gas diffusion. 

 

2.2 Dynamically-rearranging neural networks 

Another group of neuromodulated systems that were strongly inspired by biology are 

dynamically-rearranging neural networks (DRNNs)
 
(Kondo et al. 1999), which are 

based on the neuromodulatory system found in the crustacean stomatogastric nervous 

system (STNS) (see chapter one).  Just as neuromodulators can functionally rearrange 

circuits in the STNS, the synapses of DRNNs are dynamically altered as a result of 

neuromodulatory input.  A neuron may release zero or one of two types of 

neuromodulators when its activation lies within a certain range.  Neuromodulation alters 

the way in which the connection weight between the two neurons is updated based on 
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the combination of modulators received by the postsynaptic neuron.  The synapse may 

become Hebbian, anti-Hebbian (in which the weight decreases proportionally to 

simultaneous presynaptic and postsynaptic activation), or non-learning (in which the 

weight remains the same).  All of these factors (the type of modulator released, the 

range of activation values that will trigger release, and the postsynaptic response to 

modulation) are genetically determined. 

 In a simulated peg-pushing task, in which a robot controlled by a three-layered, 

fully connected feedforward network must push a peg towards a light source, both 

DRNNs and conventional networks (in which weights were evolved and fixed) were 

found capable of evolving successful networks
 
(Kondo et al. 1999).  However, 

successful DRNNs consistently outperformed conventional networks when random 

elements were introduced in the environment by slightly perturbing motor output, peg 

movement, or peg size.  This suggested that neuromodulation increases robustness 

against environmental fluctuations.  The authors proposed that DRNNs can help 

overcome the difficulty of employing agents that were evolved in simulation in the real 

world.  Indeed, DRNNs implemented in real peg-pushing robots achieved success 

where conventional networks could not
 
(Eggenberger et al. 1999).   

 The adaptability of DRNNs was further demonstrated in bipedal robot 

locomotion
 
(Fujii et al. 2001; Ishiguro et al. 2003), in which a robot with jointed legs 

must walk across surfaces of varying degrees of smoothness.  Here, the network 

consisted of a set of neural oscillators located at each joint in the body that generated 

rhythmic movement.  Furthermore, four types of neuromodulators were used, and each 

had associated concentration values that were either proportional to the activation of the 
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releasing neuron
 
(Fujii et al. 2001) or evolved

 
(Ishiguro et al. 2003).  These values were 

used to directly modify synaptic weight, and each synapse had an evolved set of 

receptors specific for each neuromodulator.  In a simulation of locomotion on flat 

terrain, successful neurocontrollers were often not modulated (i.e., weights were fixed), 

suggesting that modulation is not especially useful or necessary in relatively static 

environments
 
(Fujii et al. 2001).  However, modulation was found to be necessary when 

controllers were evolved in strictly downhill or uphill environments and when evolved 

controllers were tested in novel environments in which the surface had downhill, uphill, 

and flat areas
 
(Ishiguro et al. 2003).  Modulated controllers were also able to withstand 

unexpected forces applied to the robot
 
(Ishiguro et al. 2003).  DRNNs have also been 

successfully evolved for simulated quadrupedal locomotion on even and uneven terrains
 

(Otsu et al. 2001). 

 

2.3 Multileveled networks 

Extended sequential cascaded networks (ESCNs), which are recurrent networks that use 

internal activation values to dynamically update weights, have been used to explore 

several different robotic tasks
 
(Ziemke 1999; Ziemke and Thieme 2002).  The network 

consists of two subnetworks called the function network and the context network.  The 

function network is the primary network that maps sensory input to motor output.  This 

network also uses its internal state (i.e., its internal activation values) to produce input 

for the context network, which subsequently updates the function network’s weights in 

the next time step.  Furthermore, a decision unit maps internal state to input for the 

context network, which prevents the context network from updating the function 
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network when it was not activated.  ESCNs are variations of sequential cascaded 

networks (SCNs), which do not have decision units and, thus, the function network is 

modulated at every time step.  Because function network weights are updated by the 

context network, only context network weights were evolved in all experiments 

discussed here. 

 An ESCN was tested alongside a SCN, other recurrent but non-modulated 

networks, and a feedforward network in a simulated task in which the robot navigated 

towards a marked zone in an enclosed area while avoiding obstacles, such as walls
 

(Ziemke 1999).  A second scenario incorporated objects inside and outside of the target 

zone.  Here, the goal of the robot was to navigate towards the zone, picking up objects 

inside of the zone and avoiding objects outside of the zone.  In both scenarios, the 

ESCN outperformed all other networks, while the feedforward network had the worst 

performance by large margins. 

 ESCNs have also been used to investigate a possible role for synaptic plasticity 

in short-term memory (STM) in ANNs
 
(Ziemke and Thieme 2002).  The task involved a 

T-maze in which the simulated robot decided which direction to turn at the T-junction 

based on a stimulus encountered some distance prior to reaching the junction.  The 

stimulus was a light that appeared on either side of the corridor, indicating the direction 

that the robot should turn.  Because there is a delay between the stimulus and turn, the 

robot must somehow “remember” that stimulus long enough to make the correct 

decision.  The authors thus investigated the use of the ESCN as a STM mechanism.  

Tested in a number of different T-mazes of varying degrees of difficulty, the ESCN 

controllers were able to efficiently utilize neuromodulation (via activation of the 
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decision unit) to switch between different sensorimotor mappings when it was 

necessary, while relying on a purely reactive (i.e., static) network otherwise.  These 

results suggest that synaptic plasticity (via weight modification in the function 

network), which has primarily been considered a long-term memory mechanism in 

ANNs, may have a useful role in STM tasks.     

 A similarly structured, two-leveled network has also been designed and tested 

on the same type of delayed response task described above
 
(Bergfeldt and Linåker 

2002).  This system consists of two levels, termed echelons, that are similar to the 

function and context networks of the ESCN.  The lower level behaves like the function 

network, consisting of a basic echelon (echelon 1) that maps sensory input to motor 

output, while the higher echelon (echelon 2) is analogous to the context network,  

periodically modulating the lower level.  An unsupervised algorithm was used to 

classify sensory input into discrete categories or events (e.g., “junction”, “corridor”, or 

“lights”) such that echelon 2 was only updated whenever new events occurred.  

Furthermore, a gating unit (similar to the decision unit of the ESCN) that gated the 

output from the echelon 2 to echelon 1 was implemented to prevent unnecessary 

modulation.  Outputs from echelon 2 were added to the bias weights of the output nodes 

in echelon 1.  Thus, modulation here is limited compared to modulation in the ESCN, 

where a new sensorimotor mapping was established every time modulation was 

triggered.   

 Modulation by echelon 2 was found to be unnecessary when simulated robots 

were evolved for a simple delayed response T-maze task.  In a related but more 

complicated maze task, in which the robot can choose to either turn or go straight 
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depending on the location of the light, echelon 2 was fully utilized.  Furthermore, 

success was also achieved in a novel environment consisting of a maze with multiple 

corridors, stimuli, and turns.   

 Another modulated system (unrelated to those described above) that utilizes two 

levels of information processing was developed by Meng et al. (2010).  This system 

uses a “gene regulatory network” (GRN) to continually modulate the primary network.  

This model was inspired by biological genes and the regulatory functions of their 

products.  Neurons in the primary network contain genes, the products of which are 

used to modify various parameters of synapses (such as the learning rate).  Each 

modifiable parameter corresponds to the expression of a gene.  Gene products could 

also modify the activities of their own or other genes.  Finally, input to a gene consists 

of two “ion concentrations”, which are values proportional to the input and activation 

threshold of its neuron.  Thus, the GRN modulates the primary network, which in turn 

affects the functioning of the GRN.  The system was used to analyze video sequences 

showing various human behaviors (such as walking or running) and assign each 

sequence a behavior label.  Results showed that the GRN-modulated system was 

capable of a high rate of behavior recognition, and outperformed several other methods. 

 

2.4 Networks with modulatory neurons 

Soltoggio et al. (2007)
 
aimed to separate the regulatory function of neuromodulation 

from the process of neurotransmission by incorporating a special type of modulatory 

neuron alongside standard neurons.  In this system, modulatory neurons carry out the 

singular role of modifying synaptic plasticity; their outputs do not affect the activation 
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of postsynaptic neurons.  Standard neurons transform inputs via a standard sigmoid 

function, while modulatory neurons use a slightly altered function with a more limited 

range.  Modulatory neurons exert their effect on the weight update rule for connection 

weights between traditional neurons.  The summed modulatory input for each standard 

neuron simply acts as a multiplicative factor for the update rule between itself and all 

associated presynaptic neurons.  
 

 This type of network was tested in a simulated foraging task in which a bee 

explores a 3D environment populated by colored flowers with varying amounts of 

nectar.  Flower colors indicated, with varying degrees of reliability, the amount of 

nectar the bee received upon reaching the flower.  The uncertainty of reward introduced 

a dynamic component into the environment.  This associative learning problem was 

based on the biological discovery of a neuron that mediates the unconditioned stimulus 

in the conditioning of a feeding behavior in honeybees (Hammer 1993).  The number of 

each type of neuron and other network attributes, such as connectivity and update rule 

parameters, were evolved.  Each network was evolved in different environmental 

scenarios that varied in the accuracy of flower color as a reward predictor.  Modulated 

networks were tested against networks with non-modulated update rules (i.e., all 

summed modulatory inputs were set to one) and networks with fixed weights.  

Modulation of synaptic plasticity (via alterations of update rules) was found to be 

crucial to an agent’s ability to develop a learning strategy essential for the fluctuating 

environment.  Networks with modulation performed better than both networks without 

modulation and networks without any synaptic plasticity.  Furthermore, solving the 

foraging task did not necessitate networks with complex designs as long as modulation 
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was incorporated, since successful networks typically had a small number of both types 

of neurons.   

 Interestingly, successful agents seemed to be able to adjust the level of 

neuromodulation according to the level of learning required by the environment.  For 

example, modulation was low when flowers were outside of the visual field, while 

modulation was high upon reaching a flower.   The ability to turn learning on and off 

was further demonstrated with the same type of modulated network used in a simulated 

T-maze-navigation task
 
(Soltoggio et al. 2008).  Here, a high reward was placed on one 

end of the T-arm, while a low reward was placed at the other end.  The goal of the agent 

was to collect the high reward and return to its starting position.  A double T-maze, 

which contained more turns and possible rewards, was also implemented.  This learning 

task was similar to the foraging problem in that reward locations were not fixed.  

Modulated networks were once again tested against fixed-weight and non-modulated 

(but plastic) networks.  Modulated and plastic networks were approximately equally 

superior to fixed-weight networks in solving the single T-maze task.  However, both 

fixed-weight and plastic networks showed greatly lowered performance in the double T-

maze.  Successful networks evolved in this dynamic environment exhibited an ability to 

switch between explorative and exploitative behavior.  Although this ability to switch 

strategies was present in all successful networks (both modulated and non-modulated), 

evolution with modulation found these strategies more successfully, and removing 

modulation from successful modulated networks lowered their performance.  Thus, 

these results suggest that neuromodulation does not enable the evolution of successful 

networks but rather makes the process more efficient.  However, a more realistic 
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extension of the simulated maze-navigation task revealed that it may be desirable to 

limit neuromodulation to certain parts of the network
 
(Dürr et al. 2008).  Here, agents 

aimed to avoid collisions in addition to locating rewards in a T-maze.  Networks with 

modulation restricted to certain neurons achieved higher fitness than networks with 

unrestricted modulation and fixed networks.  The authors proposed that unlimited 

modulation may disrupt simple behaviors that do not require plasticity, such as obstacle 

avoidance.   

 This type of neuromodulation has been used as a mechanism of introducing 

plasticity into networks in various applications.  For example, Arnold (2011) employed 

plasticity via modulatory neurons to evolve reinforcement-free learning.  The author 

asserted that if the network organization affecting problem-solving behavior is closely 

matched to the organization of the environment, networks can better tolerate dynamic 

environments by reducing the number of behavioral adjustments that would need to be 

carried out as the environment changes.  It was further hypothesized that in imposing 

selection pressure on a network’s ability to learn (here, through neuromodulation) by 

incorporating environmental unpredictability, isomorphism (i.e., similarity in 

organization) between the network and the environment would simultaneously emerge.  

Because it was proposed that the use of reinforcements or rewards in machine learning 

hinders the evolution of such isomorphism, networks were evolved for pursuing prey in 

a simple grid world using neuromodulation in a reinforcement-free “learning phase” 

that took place prior to operation in the test environment.  In the learning phase, the 

effect of each action was randomized and actions did not affect fitness, thus networks in 

this phase learned only the effects of each action without learning how it might aid in 
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survival in the testing environment.  This type of learning was accomplished by 

incorporating the same type of modulatory neuron described above.  Results showed 

that evolution with neuromodulation during the learning phase led to much higher 

fitness than evolution without neuromodulation, thus it may be concluded that 

neuromodulation allowed the network to handle unpredictability in its actions as well as 

the subsequent emergence of a reinforcement-free learning ability. 

 Others have used the type of neuromodulation described here to demonstrate the 

advantages of evolving plastic networks using various non-traditional techniques in 

neuroevolution.  For example, Tonelli and Mouret (2011) evolved neuromodulated 

networks using a map-based encoding scheme, which uses grids of neurons as building 

blocks, rather than more traditional methods of genetic encoding, while Risi et al. 

(2012) evolved neuromodulated networks using novelty search, which focuses on 

rewarding novel behavior rather than reaching the final objective. 

 

2.5 Global neuromodulation and multiple modulatory effects 

Inspired by the neuromodulatory processes responsible for emotion
 
(Fellous 1999) and 

the possible functional roles of emotions in robotic agents
 
(Fellous 2004), Parussel and 

Smith
 
(2005)

 
designed a neuromodulated neural network tasked to solve a simple action 

selection problem.  The goal of the simulated agent (i.e., the network) was to maximize 

two resources by selecting from a discrete set of actions (i.e., output neurons) that had 

direct and predetermined effects on its internal state, which signified the need and 

satiety level of each resource.  There was no tangible environment, thus the agent could 

only sense and act according to its internal state.  In this system, neuromodulatory 
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signals are time-dependent decaying global signals that correspond to the need of each 

resource and are increased by the firing of certain neurons.  Such neurons have 

“secretors” for modulators, while other neurons have “receptors”.  Receptors are either 

excitatory or inhibitory.  Neurons receptive to modulatory signals are subject to one of 

two types of alterations: a change in input sensitivity or a change in firing probability.   

The type and extent of modulation depend on the type and level of the modulatory 

signal as well as the type of receptor.  Secretors and receptors are restricted to neurons 

in certain layers.  Modulation parameters, such as signal decay rate and secretion rate, 

were evolved alongside other network parameters.   

 Different experiments varied the locations of modulation and the number of 

types of modulators.  Modulation of the outer layer (containing receptors) by the middle 

layer (containing secretors) by a single modulator outperformed both non-modulated 

networks and other versions of modulated networks
 
(Parussel and Cañamero 2007).  

Contrarily, modulation of the middle layer by the input layer caused perturbations in the 

network, leading to fluctuations in action choices rather than stabilization on an optimal 

strategy, thus resulting in lowered performance compared to that of non-modulated 

networks
 
(Parussel and Smith 2005).  However, when these networks were tested for an 

extended period of time following evolution (i.e., in a novel environment), modulation 

proved to provide a robustness advantage
 
(Parussel and Smith 2005).  The primary 

significance of these findings is that neuromodulation could be used to alter the type of 

strategy that an agent employs.  Depending on which layer was receptive to modulation, 

one of two possible behaviors was elicited: exploitative behavior or exploratory 

behavior, both of which are important strategies for learning agents.   
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 French and Cañamero (2005) have also developed a simple neuromodulatory 

system that comprises multiple types of modulatory effects.  A robotic system was 

implemented for a foraging task, in which the agent navigated an arena containing a 

variable amount of food.  The agent’s energy continuously decreased over time, and 

foraged for food when its energy dropped below a certain amount.  The goal of the 

agent was to learn a foraging strategy that would allow it to survive for as long as 

possible.  The strategy would include the time (in terms of energy level) at which the 

agent would begin foraging.  The network consisted of sensory neurons, motor neurons, 

and interneurons.  The modulatory component resided within the motor neuron that 

controlled eating.  When this neuron fired, all interneurons were differentially affected.  

Neuromodulation could decrease the activation threshold of the postsynaptic neuron, 

cause the postsynaptic neuron to fire without input, or alter the response of the 

postsynaptic neuron to the crossing of its threshold (i.e., whether it becomes excited or 

inhibited).  Because this modulatory motor neuron is not directly synapsed with any 

interneurons, the modulatory signal here may be considered somewhat global.  The 

effects of modulation on each interneuron were predetermined and the robot was tested 

with varying amounts of food in the environment and compared to systems lacking 

neuromodulation.  Results showed that the modulated robot survived longer than the 

non-modulated robot only when there was an intermediate amount of food.  When food 

was scarce, modulation was not an advantage even though it allowed the robot to being 

foraging sooner.  The authors hypothesized that this may be due to the fact that the 

longer it foraged, the slower it moved owing to inherent characteristics of the robot’s 

architecture.   
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2.6 External modulatory signals 

All of the implementations described thus far share the common feature that all 

modulatory signals are internal to the network itself or, at the very least, originate from 

another neuron.  That is, the changes that a neuron undergoes result from the activity of 

other neurons.  However, it may be possible for a neuron or synapse to be modulated 

not as a direct result of the firing of another neuron but as a result of some other type of 

signal.  For example, global reward signals have been used to modulate spike-time-

dependent synaptic plasticity (STDP) to achieve reinforcement learning.  STDP is a 

type of synaptic plasticity that depends on the timing of the firing of the presynaptic 

neuron relative to that of the postsynaptic neuron.  Florian (2007) argued that because 

Hebbian STDP (i.e., the strengthening of synapses when presynaptic activity occurs 

immediately before postsynaptic activity) could be used to establish particular input-

output mappings, its modulation using a reward signal could lead to reinforcement 

learning.  That is, if associations linked to desirable outcomes were strengthened by a 

positive reward signal and associations linked to undesirable outcomes were weakened 

by a negative reward signal, reinforcement learning would emerge.  This was indeed 

accomplished by modulating weight update rules with positive as well as negative 

reward signals, leading to Hebbian and anti-Hebbian STDP, respectively.  Farries and 

Fairhall (2007) also demonstrated similar results using modulatory reward signals.  

External, global reward signals have also been successfully used to control synaptic 

plasticity in a network implementing actor-critic learning, a type of reinforcement 

learning (Potjans et al. 2009). 
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2.7 Models of neuromodulation 

Finally, as stated previously, the aim of this work is not to directly model biological 

neuromodulation, and the systems described thus far are not explicit simulations of 

biology.  However, it may nonetheless be worthy to mention certain implementations of 

artificial neuromodulation that are designed to be more analogous to specific biological 

neuromodulatory systems, as they may help bridge the gap between the intricate 

biological process and an effective, generalizable artificial implementation.   

 For example, Cox and Krichmar (2009) developed a neuromodulated robotic 

controller inspired by specific modulatory systems in the animal brain.  Their 

neuromodulatory system includes three centers modeled after the raphe nucleus (RN), 

the basal forebrain, and the ventral tegmental area (VTA), sites of 5-HT, ACh, and DA 

release, respectively.  The authors asserted that 5-HT, ACh, and DA activity is 

associated with risk taking, attention, and reward anticipation, respectively, and that the 

release of these modulators, triggered by specific environmental stimuli, allows an 

animal to switch between exploitative and exploratory behavior.  The artificial model 

follows this same line of thought.  For example, when the robot encounters harmful 

stimuli, the RN would be activated, resulting in risk-aversion behavior.  The 

neuromodulatory centers reside within the primary network, which contains visuomotor 

neurons, action neurons that allowed the robot to flee (move away from an object) or 

find (move towards an object), and behavior driver neurons (consisting of two groups of 

neurons signaling good and bad events) connected to the neuromodulatory system as 

well as action neurons.  “Good” behavior drivers were set to strongly excite the VTA 
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and “find” action neurons and inhibit the RN and “flee” neurons, while “bad” drivers 

were set to carry out the opposite effects.  Furthermore, modulatory signals alter 

synaptic input as well as synaptic plasticity in an additive fashion.  The robot was tested 

in an enclosure with color-changing panels on the floor, and its task was to associate 

certain colors with certain behaviors (e.g. “red” with “flee”).  Results showed that the 

neuromodulated robot was able to form associations between stimuli and actions, and 

simulated lesion experiments resulted in lowered performance.  The authors attributed 

the success of this system to the ability of neuromodulation to increase the robot’s focus 

on important stimuli by amplifying certain signals and suppressing others.   

 A less elaborate model using the same ideas was later developed (Krichmar 

2012).  In this model, behavior selection is once again driven by neuromodulation, 

which is in turn activated by certain sensory stimuli.  The neuromodulatory system here 

included a DA neuron, a 5-HT neuron, and several ACh neurons.  The rest of the 

network consisted of neurons signaling certain events (such as “low battery”) and 

neurons for each possible behavior (such as “find home”).  The possible events signaled 

either possible harm or possible reward and activated the appropriate neuromodulatory 

neurons, which in turn triggered either exploratory or risk-aversion behaviors.  The 

agent was once again shown to be able to switch between exploratory or exploitative 

behaviors using neuromodulation.  Furthermore, because ACh neurons were connected 

to event neurons through plastic synapses, the ACh system was found to be useful in 

gating events (i.e., decreasing attention to frequent events and increasing attention to 

rare or novel events).  The latter system is a less detailed, and probably more 

generalizable, model of neuromodulation.  Although both are somewhat literal 
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translations of biological neuromodulation, their implementation in robotic systems may 

provide insight on various artificial intelligence and robotics problems, such as action 

selection and switching between different types of behaviors.   

 

3. Functional significance of neuromodulation in artificial neural networks 

Before the implications of the experiments and results of the systems described above 

are examined, it may be practical to first define or characterize neuromodulation in an 

artificial setting as presented in this chapter.  The neuromodulatory mechanisms 

described here involved either the modulation of the synaptic plasticity of the network 

(by targeting the weights or weight update rules) or the modulation of some intrinsic 

neuron property (by targeting the activation function).  Consequently, these mechanisms 

introduced a dynamic element into the network.  This allowed for the agent to alter its 

sensorimotor mapping in the course of its lifetime according to environmental or 

internal prompts.  Thus, artificial neuromodulation may be broadly characterized here 

as a mechanism that endows agents with lifetime plasticity, or the ability to learn.  

Populations, therefore, are evolved not to simply react but also to adapt.   

 A distinction should be made at this point concerning two different methods of 

adapting to an environment: learning and evolution.  The former occurs over individual 

lifetimes at the phenotypic level, while the latter occurs over generations at the 

genotypic level.  Nolfi and Floreano
 
(2000)

 
have proposed that because any adaptation 

discovered through learning could, theoretically, also be discovered by evolution, one of 

the primary advantages of learning lies in its ability to smoothen the fitness landscape.  
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That is, the lifetime plasticity imparted by learning or neuromodulation facilitates the 

climb of an evolving population towards fitness peaks.   

 Learning agents with evolved local plasticity, in which the continual changes 

that individual synapses or neurons undergo are due to predefined synaptic or neuron 

properties rather than to modulatory signals from other neurons, have shown success in 

adapting during individual lifetimes.  For example, Floreano and Mondada
 
(1996)

 

developed networks in which each synapse was individually and continually modified 

according to its own evolved learning rule, while Di Paolo
 
(Di Paolo 2000)

 
developed a 

neurocontroller in which each synapse was individually modified according to its own 

evolved rule whenever the firing rate of associated neurons were outside of a certain 

range.  The plasticity exhibited in these systems, in contrast with the plasticity described 

above, is controlled at a strictly local level.  That is, the changes that occur at a 

particular synapse or neuron are not directly influenced or evoked by another neuron.  

Neuromodulatory signals, on the other hand, underlie heterosynaptic regulatory systems 

that likely allow for the detection of environmental characteristics or changes that 

cannot be recognized at the local level.   

 In at least in one instance, the advantage of lifetime learning imparted by 

neuromodulation cannot be explained in terms of fitness landscapes.  Of the 

neuromodulatory systems described above, the success of GasNets have been studied 

most extensively.  The results of these studies do not support the idea that 

neuromodulation (as implemented in GasNets) simply modifies the fitness landscape 

such that good solutions are easier to find (by “sampling” nearby genotypes).  One 

study found no measurable differences between the search spaces of GasNets and the 
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same type of network with gases disabled (NoGas networks)
 
(Smith et al. 2001).  

Random sampling of solutions from the search spaces of networks with and without 

gases showed no significant differences in terms of the number of good solutions, 

landscape ruggedness, or landscape modality (a measure of the number of local optima)
 

(Smith et al. 2001).  Instead, it has been proposed that a primary reason behind the 

increased evolvability of GasNets is its temporal adaptivity, or the ability to integrate 

environmental signals and operate over different timescales
 
(Smith et al. 2002).  In an 

analysis comparing GasNets and NoGas networks evolved for the target discrimination 

task described in section 2.1, the success of GasNets was attributed to its ability to 

easily generate a timing mechanism that distinguishes between the two different shapes 

(for which the duration of specific input signals differed) and switches the network 

between stable states over multiple time steps
 
(Smith et al. 2002).  GasNets were able to 

accomplish this through the gradual buildup and decay of emitted gases, while the 

timing mechanism found in NoGas controllers were more complex and less intuitive.  It 

was argued that the GasNet timing mechanism is more easily modified during evolution 

through simple adjustments of modulation parameters, and thus GasNets are more 

adaptable to specific temporal characteristics of the environment.  This was further 

supported in the same study by a considerable increase in evolvability of GasNets over 

NoGas networks when they were re-evolved in altered environments with different 

temporal characteristics.   

  Another possible role of neuromodulation is to allow neurocontrollers to 

function in novel environments.  In biology, neuromodulation confers a greater degree 

of adaptability to a nervous system by allowing it to change in accordance with the 
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environment.  In artificial systems, adaptability would be desirable in dynamic 

environments or in instances in which the real-life problems that networks are tasked to 

solve differ greatly from the example problems that were encountered during evolution 

or training.  Such discrepancies between the training environment and the real 

environment may significantly limit the functionality of the network.  This “reality gap” 

has been characterized in evolutionary robotics
 
(Jakobi et al. 1995), in which neural 

networks are employed in actual robotic agents that must navigate real-life 

environments.  Thus, aside from increasing evolvability, a function for neuromodulation 

may be to provide a mechanism by which artificial networks can achieve robustness in 

novel environments.  Researchers of DRNNs have stressed the crossing of the reality 

gap as a function for neuromodulation
 
(Kondo et al. 1999). 

   

4. Conclusions 

Because the research studies discussed in this chapter vary widely in many aspects (e.g., 

the types of learning tasks networks were evolved for, the structures that networks 

adopted, whether the network-controlled agents were real or simulated, the evolutionary 

schemes used, how networks were tested, and controls used in the tests), direct 

comparisons between systems may not be practical.  However, a general conclusion that 

can be drawn here is that the switching between strategies or behaviors in response to 

environmental input that is facilitated by neuromodulation, here broadly defined as a 

mechanism for lifetime learning, is central to increases in performance.  In GasNets, it 

was found that switching between stable states over several time steps, which was 

crucial to its success in the particular task studied, was easily accomplished by diffusing 
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gases.  Switching between different sensorimotor mappings as a result of modulatory 

signals was noted in ESCNs
 
(Ziemke and Thieme 2002).  Soltoggio et al. (2008) and 

Parussel and Smith
 
(2005) both noted that neuromodulation allowed the transition 

between explorative and exploitative behavior.  These strategies are important for 

learning, presumably (and especially) in unstable environments in which the agent must 

set out to acquire new information (explore) instead of using old behaviors to maximize 

rewards (exploit).   

 In some cases, it was found that the evolution of successful controllers does not 

necessarily require neuromodulation, since it may well be that neuromodulated 

networks are computationally equivalent to non-modulated networks.  However, 

neuromodulation allowed for a more rapid or efficient search for good solutions and a 

reduction in the design complexity of successful networks.  Biological neuronal 

signaling involves not only electrical impulses in the form of action potentials, which is 

the instantaneous type of communication emulated in traditional, non-modulated neural 

networks, but also involves chemical signals that, at times, induce long-term changes, 

thereby introducing an additional component or dimension to neuronal communication.  

A non-modulated network (having just one dimension in signal transmission) that is 

functionally equivalent to one that is modulated would likely have to be much more 

elaborate in design, and thus be more difficult to evolve.   

 Studies of GasNets have suggested that the degree to which the two signaling 

systems in a network (normal “electrical” signals and neuromodulatory signals) 

influence each other may affect its success.  Specifically, it has been found that a 

flexible coupling between neurotransmission and neuromodulation is desirable over a 
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tight coupling in which altering one system necessarily alters the other.  The increased 

evolvability of the GasNet variants described in section 2.1 was attributed to a 

decoupling or loosened coupling between the two systems.  That is, through evolution, 

gas modulation could be physically separated by some distance from emitting nodes (in 

the plexus GasNets), while receptors on a node could limit the amount of modulation it 

undergoes (in the receptor GasNets).  The authors suggested that the loose coupling 

between interacting systems renders a network phenotypically stable (i.e., genotypic 

changes do not necessarily lead to phenotypic changes) and thus more evolvable.   

 Finally, while neuromodulated networks usually outperformed non-modulated 

networks, neuromodulation was shown to be an undesirable feature in at least one 

instance in which change and adaption were not necessary
 
(Dürr et al. 2008).  

Neuromodulation seemed to cause disturbances in the system, facilitating alterations 

between behaviors.  Therefore, in certain instances, such as when operating in 

environments that are relatively static, such alterations may be unfavorable.  Because 

the complexity of biological neural networks is not paralleled by neurocontrollers, 

which have relatively simple sensorimotor mappings, the continuous modulation of 

biological networks should perhaps be mirrored only to an extent in artificial systems, 

and networks should thus have the ability to switch off or adjust any evolved 

neuromodulatory features.  For example, the design of the ESCN explicitly incorporated 

a switch to turn neuromodulation on and off
 
(Ziemke and Thieme 2002).   
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5. Summary 

Some of the neuromodulated neural networks described in this chapter were inspired by 

very specific mechanisms or systems of biological neuromodulation (i.e., NO signaling 

and neuromodulation in the crustacean STNS), while others emulated the general 

effects of biological neuromodulation.  While these systems differed greatly in the 

details of implementation, the primary effect was the continual adjustment of synaptic 

plasticity or of transfer functions over the lifetime of the neurocontroller.  Explanations 

for the increased performance demonstrated by neuromodulated systems over their non-

modulated counterparts have been given at various levels of abstraction.  Although each 

computational task and the specific type of ANN employed for each task differed, the 

keys to the success seen in the systems described here may still provide insight on very 

general elements that may be advantageous or disadvantageous in any implementation 

of neuromodulation.  Here, neuromodulation has been mechanistically and broadly 

defined as a means by which lifetime plasticity is achieved.  Finally, although biological 

neuromodulatory mechanisms may regulate certain types of synaptic plasticity, 

neuromodulation encompasses a wider range of effects (see chapter one).  That is, there 

are other ways in which network plasticity could conceivably be achieved.  The 

implementation of these other effects in an artificial setting will be explored in the next 

chapter.   

 

Chapter 4: Neuromodulation in artificial neural network 
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1. Introduction 

Biological neurons and the circuits that they constitute may adopt different roles in 

different circumstances due to neuromodulation.  Neuromodulation increases the scope 

of functioning of neurons by granting them the ability to shift between different 

functional states on distinct neurochemical cues.  Artificial neural networks, which 

mostly do not incorporate neuromodulatory processes, could potentially benefit from 

similar increases in functionality.  In chapter three, neuromodulation within the context 

of artificial systems was broadly defined as a mechanism to introduce lifetime 

plasticity.  It was shown, albeit through a limited variety of implementations, that the 

use of a signaling system separate from that of “classical” neurotransmission to 

introduce this type of plasticity generally led to improvements in evolvability and 

robustness.    

 In this chapter, variations on the theme of incorporating an additional signaling 

system to augment functionality will be explored.  Due to inherent differences between 

biological and artificial neural systems, it is likely not appropriate or feasible to attempt 

a modeling or direct transfer of specific concepts from a biological to an artificial 

context.  Biological neuromodulation may be generally characterized by signals that are 

often diffuse and have slow-acting and long-lasting effects
 
(Katz 1999).  The 

importance of these fundamental features suggests that they should serve as the starting 

point of the development of artificial neuromodulatory systems.   

 Due to the enormous variety of artificial networks, this chapter will broadly 

present some general ways in which the neuromodulatory process may be introduced 



52 

into an artificial setting, rather than address a particular type of network or emulate a 

specific type of biological neuromodulatory system. 

 

2. Neuromodulatory signals 

 

2.1 Nature of modulatory signals 

In biological systems, neuromodulatory communication is typically not solely 

distinguishable from neurotransmission by the signals that are involved.  Both types of 

communication involve the release of the same kinds of chemical messengers, while the 

reception of these messengers determines their effects.  Receptor systems can also be 

implemented such that the effect of a signal is determined by postsynaptic nodes (fig. 

2).  In such a scenario, one signal may have different effects on different neurons 

depending on a neuron’s collection of receptors.  Receptors may determine whether 

neurons undergo modulation or how they will be affected by modulation.      
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Figure 2. Receptor systems.  Neurons with a bold outline are modulated.  Arrows in 

(a) and (b) indicate signals that may be standard or modulatory depending on the 

postsynaptic neuron.  In (c), the solid arrow indicates a standard signal, while dashed 

arrows indicate modulatory signals.  Neurons transmit variable types of signals, while 

receptors determine the effects. (a) Neuron C, which possesses a receptor (square) that 

mediates modulatory effects, is modulated by neuron A.  Neuron B receives standard 

input from neuron A.  All neurons transmit standard signals, while receptors determine 

whether such signals also modulate their neurons.  This is analogous to a biological 
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network using neurotransmitters that activate ionotropic receptors and, in some cases, 

metabotropic receptors. (b) This is an extension of the situation shown in (a). Here, m 

ultiple receptor and signal types exist; each receptor determines the type of signal that 

will modulate its neuron.  The type of receptor belonging to neurons A and C (square) 

treats one type of signal (regular arrow) as a modulatory signal, while the receptors 

belonging to neurons B and D (hexagon) treats the other type of signal (bold arrow) as 

modulatory.  In this case, neurons B and C will undergo neuromodulation.  This is 

analogous to a biological network using neurotransmitters that activate ionotropic 

receptors in some neurons and metabotropic receptors in other neurons. (c) Neurons 

transmit either standard signals or modulatory signals; receptors determine the effect of 

modulation.  Neuron A will not undergo neuromodulation, while neurons B and C 

become modulated with different effects.  It may be possible for some neurons (D) to 

possess more than one type of receptor.  Depending on the types of effects, multiple 

modulatory signals may completely cancel each other out (e.g., increasing and 

decreasing a neuron’s threshold by the same magnitude), result in an additive effect 

(e.g., multiplying a neuron’s output by different values), simultaneously modulate a 

neuron without any effects on each other (e.g., increasing threshold and amplifying 

output), or result in an intermediate effect (e.g., reducing a neuron’s firing rate between 

two values set by two different modulatory neurons). 

 

 With the absence of receptor systems in artificial networks, signals that 

modulate neurons must be distinguishable in some manner from other signals.  For 

example, some subset of values within the range of possible node outputs may be set 

aside for neuromodulation (fig. 3a).  The postsynaptic neuron may also determine 

whether a signal is modulatory (figs. 3b and 3c).  Modulatory signals may also be 

distinguished by their source.  That is, certain nodes may be designated as modulatory 

neurons.  In some instances, the numerical value of the signal may be used to modulate 

the postsynaptic unit (fig. 4a).  Signals can also be non-numerical.  For example, signals 

could be flags for some postsynaptic modulatory event to take place (fig. 4b). 
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Figure 3. Distinguishing modulatory signals.  Neurons with a bold outline are 

modulated. Solid arrows and dashed arrows indicate standard and modulatory signals, 

respectively. (a) Outputs (x) from neuron M are modulatory until a threshold (TM) is 

reached.  Thus, neuron M modulates neuron A but not neuron B. (b) A modulatory 

threshold (TC) is set by neuron C.  This value determines whether incoming signals are 

modulatory.  Values below TC are not modulatory.  Thus, neuron C is modulated by 

neuron B but not by neuron A. (c) The location of incoming signals determined whether 

signals are modulatory.  Neuron D is modulated by signals more than one layer away, 

while neuron E is modulated by signals from the previous layer.  
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Figure 4. Using modulatory signals.  Neurons with a bold outline are modulated. Solid 

arrows and dashed arrows indicate standard and modulatory signals, respectively.  

Before (top) and after (bottom) modulation. (a) Neuron M modulates neuron A by 

multiplying the output of neuron A (x) by its output value (m). (b) Before (top) and after 

(bottom) modulation.  The output value of the modulatory neuron M (m) is not directly 

used.  Neuron M modulates neuron A by changing the type of connection between 

neurons A and B from standard to modulatory. 

 

2.2 Source and range of modulatory signals 

Intuitively, the most straightforward approach to establishing neuromodulatory sources 

may be to simply designate certain neurons as neuromodulatory.  However, it may 

detract from design simplicity and be functionally redundant for a system to divide 

different functions into entirely separate sets of neurons.  The alternative to this type of 
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design entails the delivery of both types of signals from one type of neuron in addition 

to a system that determines the timing and frequency of neuromodulation.  Neurons 

may be prompted to release modulatory signals under certain conditions or release both 

types of signals at all times (fig. 5).  In the latter case, the degree of modulation may be 

influenced by other variables such that neurons are not continually modulated at every 

time step. 
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Figure 5. Release of modulatory signals.  Neurons with a bold outline are modulated.  

Solid arrows and dashed arrows indicate standard and modulatory signals, respectively. 

(a) Neurons may release modulatory signals intermittently.  The output (x) of this 

neuron becomes neuromodulatory above a threshold value (TM). (b) Neurons may 

continuously release modulatory signals.  Before (top) and after (middle and bottom) 

modulation.  Neuron M normally modulates neuron A by reducing its firing threshold 

(θA) by a fixed value (middle).  However, to prevent neuron A from undergoing the 

same degree of modulation at every time step, the modulated threshold is multiplied by 

the output of neuron M (m) (bottom). 

 

 Neurotransmission in ANNs is usually limited to just the presynaptic and 

postsynaptic nodes.  The range of modulatory signals could be similarly restricted (fig. 

6a), but its effects on the performance of the whole network would likely be less 

appreciable than those produced by more diffuse signaling systems, as is seen in 

biological neuromodulation.  Conversely, a fully global modulatory system may 

generate excessive disruptions in the network such that the results may be equally 
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ineffective.  In such a system, it may be beneficial for each modulatory signal to 

differentially affect different neurons.  For example, a modulatory signal might decrease 

as it travels away from its source (figs. 6b and 6c).  Global signals may also be summed 

such that their modulatory effects are proportional to the sum, or may only modulate the 

network when the sum reaches some threshold (fig. 7).  The value of the global signal 

may also determine its target destination (fig. 8). 
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Figure 6. Range of modulatory signals.  Neurons with a bold outline are modulated. 

Solid arrows and dashed arrows indicate standard and modulatory signals, respectively. 

(a) Modulatory signals may only have local effects.  Neuron M only modulates neurons 

with which it is directly synapsed (neurons A-C).  (b) Modulatory signals may have a 
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wider range.  Before (top) and after (bottom) modulation.    Neuron M modulates 

neurons A-E but is not directly synapsed with neurons D and E.  That is, neuron M 

transmits standard signals in addition to modulatory signals to neurons A-C, while 

neurons D and E receive only modulatory signals from neuron M.  To prevent a 

network from becoming overly modulated, the modulatory effect of neuron M on 

neurons D and E (multiplying thresholds θD and θE by 0.5m) is less severe than that on 

neurons A-C (multiplying thresholds θA-θC by m). (c) Modulatory signals may decrease 

as they travel away from its source.  Neuron C emits a modulatory signal that decreases 

synaptic weights.  The greatest decrease occurs at the synapse between the emitting 

neuron and its postsynaptic node (wCE), while the synapse between neurons A and D 

(wAD) is too far away to be affected.  Effects on the other synapses (wBE, wEF, and wDF) 

are proportional to their distances from neuron C.   
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Figure 7. Summing modulatory signals.  Solid arrows and dashed arrows indicate 

standard and modulatory signals, respectively.  Before (top left) and after (top right and 

bottom) modulation.  Global modulatory signals may be summed such that modulation 

does not occur below a threshold and the effect is proportional to the magnitude of the 

summed signal.  At time t, neurons C and E emit modulatory signals mC and mE. The 

sum of these signals exceeds the modulatory threshold TM (top right).  The effect of 

modulation here is to multiply external inputs (x1-x3) by the difference between the sum 

of the modulatory value and TM at time t + 1 (bottom left). 
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Figure 8. Value of modulatory signal determines target destination.  Neurons with a 

bold outline are modulated. Solid arrows and dashed arrows indicate standard and 

modulatory signals, respectively.  Before (top left) and after (top right and bottom) 

modulation.  The value of a non-local modulatory signal may determine its target.  

Here, the effect of the signal emitted by the modulatory neuron M is to multiply output 

values (x).  Outputs from the input layer are affected if the signal is within [0, 0.5), 

while outputs from the middle layer are affected if the signal is within [0.5, 0.9).  The 

output of the network (O) is affected if the modulatory signal is within [0.9, 1]. 

 

3. Neuromodulatory effects 

Neuromodulatory signals should alter the functioning of nodes or the network itself in a 

way that is distinct from an ANN’s principal form of communication: the instantaneous 

reception of input and generation of output at each node.  Ultimately, neuromodulation 

changes the input-output mapping of the network, and such changes may have slow-

onsets or long durations.  

 Figure 9 categorizes possible areas in a network that may be targeted by 

neuromodulation.  These general targets include the operations within a single neuron, 

the reception and transmission of signals for a single neuron, synapses between neurons, 

and the network as a whole.     
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Figure 9. Possible targets of neuromodulation. The large oval indicates a neuron 

containing an integration function, an activation function, and a threshold (θ).  The 

integration function sums weighted inputs w1x1 to wnxn and passes the result to the 

activation function.  This neuron resides within a larger network (outer rectangle), the 

input and output of which are indicated by hollow arrows.  Dashed arrows point to 

possible areas (I-IV) that may be neuromodulated.  Major targetable components are 

listed under each category. 

   

3.1 Modulation of neuronal properties 

The primary ways in which the systems described in chapter 3 altered individual 

neurons involved changes to connection weights or the way weights were updated at 

each time step.  Modulation in GasNets involved alterations to the activation function of 

each node by modifying a variable within the function parameter.  Another possible 

method of altering the input used by each function is to modify the method of input 

integration (fig. 10), which typically involves taking the weighted sum of all of inputs.  

Modulation could alter the operation performed on the set of inputs, for example, by 

taking the min, max, or median of the set.  Other operations, such as an arithmetic, 
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quadratic, or geometric mean, or the square root of the sum of squares, could also be 

computed.  Activation functions may also be modulated by directly changing the 

function itself.  The commonly used logistic function, for example, may be transformed 

into another function within the family of sigmoid functions in which it resides.    
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f(xAwAC + xBwBC) 
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f((xAwAC + xBwBC)/2) 

xA, wAC

A

BB

xB, wBC

B
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Figure 10. Modulating input integration.  Neurons with a bold outline are modulated. 

Solid arrows and dashed arrows indicate standard and modulatory signals, respectively.  

Before (top) and after (bottom) modulation.  Neuron M modulates neuron C such that 

the weighted inputs from neurons A and B (xAwAC and xBwBC, respectively) is averaged 

instead of summed. 

 

 Other, less direct characteristics of individual neurons may also be targets of 

neuromodulation.  Firing patterns, for example, are not explicit attributes of neurons 

due to the discrete time steps over which ANNs operate.  That is, all output neurons 

necessarily fire at every time step.  Conceivably, this pattern could be modified to 

introduce periods during which a neuron would not generate outputs (i.e., generate an 

output of zero).  Other possible neuronal properties that may be modifiable involve the 

gating of inputs (figs. 11a and 11b).  The sensitivity of a neuron to input, for example, 

could be modified through the threshold of a neuron, which is a predetermined value 

above which the neuron would fire.  Other types of thresholds, such as a minimum 
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number of inputs received simultaneously or over a number of time steps, may also be 

established and modulated.  Input sensitivity may also be altered by limiting the domain 

of a neuron’s activation function (fig. 11c).   
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Figure 11. Modulating the gating of inputs.  Neurons with a bold outline are 

modulated.  Solid arrows and dashed arrows indicate standard and modulatory signals, 

respectively.  Before (top) and after (bottom) modulation. (a) Neuron M modulates 

neuron B by increasing its firing threshold (θB) such that an activation value of f(xAwAB) 

= 0.5 no longer results in neuron B firing (xB = 0). (b) Neuron M modulates neuron C by 

multiplying the minimum number of inputs it must receive to become modulatory (TC) 

by the modulatory signal (m).  Following modulation, neuron C becomes a modulatory 

neuron due to a decrease in TC. (c) Neuron M modulates neuron B by limiting the 

domain of its activation function (f) to values less than one.  Following modulation, 

neuron B produces an output of zero. 
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 The output of a neuron may also be directly amplified or attenuated.  For 

example, a neuromodulatory signal may act as a simple multiplicative factor on 

neuronal outputs (fig. 4a).  Output signals may be also be dampened by splitting a 

neuron’s output value among all postsynaptic neurons (fig. 12).  Furthermore, a 

modulated neuron may alter its target to affect unconnected neurons (fig. 13).  

Normally, a neuron transmits the same value to all of its postsynaptic neurons.  A 

modulated neuron could compute different signals for different postsynaptic neurons 

(fig. 14).   
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C
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wAB = 0.4

xAB = 0.66 

xAC = 0.33

wAC = 0.2 
 

Figure 12. Splitting output values.  Neurons with a bold outline are modulated. Solid 

arrows and dashed arrows indicate standard and modulatory signals, respectively.  

Before (top left) and after (top right and bottom) modulation. Neuron M modulates 

neuron A by splitting its output value (xA) between its postsynaptic neurons.  The output 

value may be split evenly (top right) or unevenly (bottom).  In the latter case, the 

division of xA (into xAB and xAC)is proportional to the weights of the associated 

synapses.  
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Figure 13. Modulating neuronal targets.  Neurons with a bold outline are modulated.  

Solid arrows and dashed arrows indicate standard and modulatory signals, respectively.  

Before (top) and after (bottom) modulation.  Neuron M modulates neuron A by adding 

a connection between neurons A and C. 
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Figure 14. Modulating output values.  Neurons with a bold outline are modulated.  

Solid arrows and dashed arrows indicate standard and modulatory signals, respectively.  

Before (top left) and after (top right and bottom) modulation.  Neuron M modulates 

neuron A by altering its output values such that different values are transmitted to 

different postsynaptic neurons.  This may occur by computing a single output value (xA) 

and choosing a random value within a range ([0.4, 0.6]) set around the output value for 

each postsynaptic neuron (top right).  A neuron may also transmit multiple values by 

alternating between different transfer functions (bottom). 

 

 Synapses between neurons may also be modulated.  Many examples of 

modulating connection weights, for example, were presented in chapter 3.  The type of 

connection between two neurons is also another possible target for modulation (fig. 15).   
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Figure 15. Modulating synapses.  Neurons with a bold outline are modulated.  Solid 

arrows and dashed arrows indicate standard and modulatory signals, respectively.  

Before (left) and after (right) modulation.  Neuron M emits a global signal that acts on 

neurons with at least two inputs and changes the type of one of these synapses such that 

neuron B now modulates neuron D.  This may be analogous to the neuromodulatory 

activation of silent receptors or the generation of new receptors in biological neurons.  

 

 Certain types of neurons or neurons in certain layers can be specifically targeted.  

For example, input neurons may be modulated such that environmental signals are 

filtered or amplified.  A neurocontroller with various environmental sensors, for 

instance, might block light input below a certain level of brightness or ignore objects 

beyond a certain distance.  Furthermore, an input neuron could exchange input values 

between itself and another neuron, thereby effectively rerouting environmental signals 

to alternate “sensory neurons”.  Output neurons could undergo similar types of 

modulation by allowing only certain neurons to fire or funneling signals to certain 

“effector neurons”.   

   

3.2 Modulation of multiple neurons and network function 

Groups of neurons may also be simultaneously modulated.  The firing patterns of a 

group of neurons, for instance, may be synchronized, or connections within the group 

could be concurrently adjusted (fig. 16).  Neurons may be grouped for the purposes of 

neuromodulation in a number of ways.  Groups may be formed by neuron type, such as 

sensory or motor neurons, neuron location, such as the layer in which a neuron resides, 

or the proximity of a neuron to the source of a modulatory signal, such as distance 

measured in terms of the number of neurons or layers.  
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Figure 16. Modulating groups of neurons.  Neurons with a bold outline are 

modulated.  Solid arrows and dashed arrows indicate standard and modulatory signals, 

respectively.  Before (top) and after (bottom) modulation.  (a) Neurons immediately 

postsynaptic to neuron M become modulated.  An output connection is removed from 

neurons in this layer with at least two output synapses.  Essentially, this has the same 

effect of reducing synaptic weights to zero, which may occur naturally over time.  

However, this allows for a much more rapid functional rearrangement of the network, 

which may be useful in certain types of environments. (b) Neuron M modulates neurons 

two layers away (neurons D and E) by multiplying weights between these neurons and 

their presynaptic nodes (wAD and wBE) by the modulatory output (m).  The upper limit 

on weights is 1, thus wCE is not altered. 

 

  Neuromodulatory signals, particularly ones that function globally, may also alter 

the functioning of the network as a whole.  Multiple groups of neurons may be 

differentially targeted, perhaps in some extension of the manner described above.  The 

network may also be modulated on a more abstract level by altering the flow of data 

(fig. 17).  For example, various temporal dynamics could be introduced to a basic 

network in which information travels instantaneously by retaining values at synapses to 

be used at later time steps.  Furthermore, as signals flow down the network, the 

magnitude of their values or the courses by which they travel are also possible targets of 

modulation.  The structure of the network could also be altered, either by local or global 
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modulatory signals, by adding and removing neurons (fig. 18) or splitting the network 

into components (fig. 19).  For example, a modulated neuron or an adjacent neuron 

could be temporarily removed from the network, or a global signal could partition the 

system into functionally distinct subnetworks.    
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Figure 17. Modulating data flow.  Neurons with a bold outline are modulated. Solid 

arrows and dashed arrows indicate standard and modulatory signals, respectively.  (a) 

At time t, neuron M modulates the network, causing the output of neuron A to be used 

at the next time step.  At time t, the input for neuron B (f(xt-1, w)) comes from the output 

of neuron A at time t-1.  This design requires the storage of all output values from the 

previous time step. (b) Before (top) and after (middle and bottom) modulation. Neuron 

M causes signals to become amplified (indicated by darkened arrows) as data flow 

down the network (middle).  Network dynamics may also be modulated by changing the 

course of signals by limiting data flow to neurons on the outside “edges” of the network 

(bottom). 



67 

A

C

D

A B

C

D

M

M

(a)                                                            (b)                                                        
 

Figure 18. Adding and removing neurons.  Neurons with a bold outline are 

modulated. Solid arrows and dashed arrows indicate standard and modulatory signals, 

respectively. Before (top) and after (bottom) modulation.  (a) Neuron M modulates 

neuron A by removing one of its postsynaptic neurons (B).  This has the same effect as 

setting certain weights (wAB and wBD) to zero.  Neuron D is reintroduced into the 

network by adding a synapse between neurons A and D. (b) A modulatory signal 

removes a neuron from one layer (the layer postsynaptic to the input layer) and adds a 

neuron to another (the layer presynaptic to the output layer).  This type of modulation 

may be restricted to areas of the network such that the removal of a neuron does not 

completely halt the flow of data. 
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Figure 19. Modulating network structure.  Neurons with a bold outline are 

modulated.  Solid arrows and dashed arrows indicate standard and modulatory signals, 

respectively.  Modulation may split the network into distinct subnetworks. (a) A 

network receiving three external inputs (x1-x3) and transmitting one output (O). (b) 

Neuron M splits the network into three parts (connections have been removed for 

clarity). (c) Before (left) and after (right) modulation.  Assuming that individual neurons 

have distinct properties (e.g., they are undergoing different modulatory effects or utilize 

different activation functions), neurons may be relocated.  Groups of neurons may be 

switched such that all of the synapses remain in the same location relative to the 

network but “reconnect” with new neurons. (d) Neurons within each group may relocate 

within the group. (e) One neuron is removed from each group. Because the number of 

external inputs and network outputs must remain unchanged, the input and output 

values may be combined.  x3, which is normally received by neuron C, is now averaged 
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with x2 and sent to neuron B.  Similarly, output values from neurons G and H are 

averaged to produce a single network output.  

 

4. Control of neuromodulation 

The slow-onset effects of neuromodulation should not be ignored in designing a 

neuromodulatory system, as this characteristic may provide some temporal flexibility in 

the functioning of the network.  Modulatory signals, if given a period of time over 

which they will build up to their full effect, may allow a network to adopt a wider range 

of input-output mappings or to operate over various timescales.  The effect of a 

modulatory signal could be either entirely delayed or gradually reach its full magnitude 

by a variable number of time steps.  For example, the threshold of a neuron could be 

gradually decreased or an increasing portion of the domain of an activation function 

could be limited over several time steps.   

 Within a network, the function of neuromodulatory communication is ultimately 

secondary to the standard, instantaneous transmission of data, and although one of the 

key characteristics of neuromodulation is its long time course of action relative to that 

of neurotransmission, modulatory effects are not typically permanent.  Furthermore, it 

may be disadvantageous for neuromodulatory systems to operate concurrently with 

standard neurotransmission at all times.  The attenuation of signal intensity over time, 

eventually leading to a neuron’s return to its normal state, as well as the ability to adjust 

a network’s level of neuromodulation or even switch it on and off should be 

incorporated into implementations of neuromodulatory systems.   

 The effects of a neuromodulatory signal could be limited simply by a number of 

cycles or time steps, which may be a set value or be determined by other factors such as 
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the type of signal, the type of effect, or the postsynaptic node.  The value of a 

neuromodulatory signal or the magnitude of its effect could also decrease continuously 

over time.  Some combination of limiting neuromodulatory signals continuously and 

limiting signals through fixed time steps could also occur, depending on the nature of 

the signal and its effect.   

 Presumably, any unnecessary neuromodulation within a network would be 

extracted via the training process or evolution.  However, it may be beneficial for a 

network to possess the ability to regulate its modulatory system during its lifetime.  

Such regulation could occur, for example, by modulating neuronal receptors in systems 

that utilize receptors, modulating the time it takes for modulatory effects to build up, or 

modulating the duration or magnitude of modulatory effects.  These effects could 

emerge from the same sources as standard neuromodulatory effects, since a separate 

“metamodulatory” system may add an unnecessary burden to the network.  The 

regulation of neuromodulation allows for input experienced during a network’s lifetime 

to alter the neuromodulatory process during the same lifetime, which may valuable to 

the network if sudden changes within its environment occurred over a short period of 

time.   

 

5. Summary 

Ultimately, the definition and significance of neuromodulation are the same in an 

artificial setting as they are in biological networks.  Essentially, neuromodulatory 

systems alter neurons in such a way that their functions depend not solely on input but 

also on their current state, increasing the range of operations a network can perform.  
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The distinguishing properties of biological neuromodulation, the slow-acting, long-

lasting effects and the wide range over which signals can have an influence, are likely to 

be important characteristics that should form the basis of artificial neuromodulatory 

systems.  Furthermore, a neuromodulatory system should allow a network to swiftly 

modify its input-output mapping, and the network should in turn be able to modify its 

neuromodulatory components.  Because the numerous varieties of existing artificial 

neural networks open up a considerable number of design possibilities in the 

implementation of neuromodulatory systems, the search for appropriate components 

and configurations should presumably be aided by evolutionary computation 

techniques. 
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