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Abstract


Descriptive natural history of the results of evolution of differentiated multi-threaded (multi-cellular) self-replicating machine code programs (digital organisms), living in a network of computers, network Tierra.  Programs are differentiated in that different threads execute different code (express different genes).  The seed organism develops into a mature ten-celled form, differentiated into a two-celled reproductive tissue and an eight-celled sensory tissue.  The sensory threads obtain data about conditions on the machines in the network, and then process that data to choose the best machine to migrate to or to send the daughter to.  Evolution leads to a diversity of algorithms for foraging for resources, primarily CPU time, on the network.


Introduction


The work presented here consists of an exploration of the properties of evolution by natural selection in the digital medium.  The evolving entities are self-replicating differentiated multi-threaded (emulated parallel) machine code programs.  They live in a network of computers, and are able to sense conditions on other machines and move between machines.


	This work is explicitly not about the evolutionary origin of the differentiated condition, but rather about evolution that takes place just after that threshold has been crossed.  This experiment begins with the most primitively differentiated condition: two cell types.


	This is an extension of the work generally known as “Tierra” (Ray 1991, 1994a, 1994b).  The original Tierra was based on single-threaded (serial) machine code programs living in a single computer.  The original model was extended by Thearling and Ray (1994, 1997) to include multi-threaded programs, living on a sixty-four processor connection machine.  However, these multi-threaded programs were of a single “cell type”, and never evolved into differentiated forms.


	The seed program used by Thearling and Ray included a loop that was iterated many times.  This loop was parallelized by using two threads, thus completing the work in half the time.  Through evolution, the level of parallelism increased to as many as thirty-two threads.  However, in the seed program and all programs that evolved from it in that experiment, all of the threads always executed the same code, thus there was no “differentiation” between threads with respect to the code executed (genes expressed).  This report extends the work of Thearling and Ray by starting with multi-threaded programs which are already differentiated (into sensory and reproductive threads).


Analogies


Here we are making analogies between some features of digital organisms and organic organisms.  The objective of making these analogies is not to create a digital model of organic life, but rather to use organic life as a model on which to base our better design of digital evolution.


	In organic organisms, the “genome” is the complete DNA sequence, of which a copy is found in each “cell”.  Each cell is a membrane bound compartment, and requires its own copy of the DNA, as the genetic information is not shared across the cell membranes.  The entire genome includes many “genes”, which are segments of DNA that code for specific functions, mostly individual proteins.  While each cell contains a complete copy of the genome, each individual cell expresses only a small subset of the genes in the entire genome.  The specific subset of genes that are expressed in a cell determine the “cell type”.  Groups of cells of the same type form a “tissue”.  Different tissues are composed of cells that have “differentiated” in the sense that they express different sub-sets of the genes in the genome.


	In our form of digital organisms, the genome consists of the complete sequence of executable machine code of the self-replicating computer program.  Each thread of a multi-threaded process is associated with its own virtual CPU.  These threads (CPUs) are considered analogous to the cells.  However, the threads of a process all share a single copy of the genome, because they operate in a shared memory environment where the genetic information can easily be shared between CPUs.  Duplication of the genome for each thread would be redundant, wasteful and unnecessary.  In this detail, our digital system differs quite significantly from the organic system.  Another difference is that here there is no spatial or geometric relationship between cells.


	The genome of the digital organism includes several segments of machine code with identifiable functions, which are coherent algorithms or sub-routines of the overall program represented by the entire genome.  These individual algorithms can be considered analogous to the genes.  Each thread (CPU) has access to the entire genome, yet each thread will execute only a subset of the complete set of genes in the genome.  The specific subset of genes executed by a single thread determine its cell type.  Groups of threads of the same cell type form a tissue.  Different tissues are composed of threads that have differentiated in the sense that they execute different subsets of the algorithms (genes) in the genome.


Network Tierra


The work reported here is focused on the evolution of the differentiated mutli-cellular condition.  The multi-threaded digital organisms live in a networked environment where spatial and temporal heterogeneity of computational resources (most importantly CPU time) provides selective pressure to maintain a sensory system that can obtain data on conditions on various machines on the network, process the data, and make decisions about where to move within the network.


	The experiment begins with a multi-threaded seed program that is already differentiated into two cell types: a sensory tissue and a reproductive tissue. The entire seed program includes about 320 bytes of executable machine code.  However, no single thread executes all of this code, just as no cell in the human body expresses all of the genes in the human genome.  The network ancestor genome has been somewhat arbitrarily labeled as composed of six genes, some of which have been further sub-divided (Figure 1).  Two of the genes are executed only during the development from the single-celled to the mature ten-celled form (sel, dif).  One gene is executed only by the reproductive tissue (rep), and one gene is executed only by the sensory tissue (sen).  Two genes are executed by both tissues (cop, dev).


Figure � SEQ Figure \* ARABIC �1�: Ancestor Genome
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Lower labels indicate the six major genes and their sizes in bytes.  Upper labels indicate sub-divisions of the major genes, and their sizes.





Methods


The rationale for the current experiment was originally presented by Ray (1995).  Technical details of the implementation have been reported in Charrel (1995) and Ray (1997, In Press).  And further details are available on the web at: http://www.hip.atr.co.jp/~ray/tierra/netreport/n


etreport.html.  Thus only a sketch of the experimental methods will be presented here.


The Tierra Web


Tierra is another web on the internet.  The Tierra web is created collectively as the result of running Tierra servers on many machines.  The Tierra server is a piece of software written in the C language, which creates a virtual machine called Tierra.  Tierra does not self-replicate, evolve, or experience mutations.  Tierra does not migrate on the net.  In order to run a Tierra server, someone must download the software, install it and run it. 


	The collection of Tierra servers creates a sub-net of the internet, within which digital organisms and Tierra browsers (Beagle) are able to move freely, accessing CPU cycles, and the block of RAM memory that is made available by the server.  Note that the digital organisms and Beagle can not access other RAM on the machine, nor may they access the disk. 


	We can think of the web of Tierra servers as an archipelago of ``islands'' (which we usually refer to as nodes or machines on the network) which can be inhabited by digital organisms.  The digital organisms are mobile, and feed on CPU cycles.  Therefore, selection can potentially support the evolution of network foraging strategies.


	In this experiment, we must create conditions under which selection will favor more complex migratory algorithms, over small highly optimized algorithms that only reproduce locally, such as evolved in non-network Tierra.  Toward this goal we introduced the “apocalypse” which at random intervals kills all organisms living on a single machine.  This provides an absolute selection against non-migratory organisms, insuring that only migratory organisms can survive in the network environment.


	Tierra runs as a low priority background process, like a screen saver, by using a “Nice” value of 19.  This causes the CPU cycles available to Tierra to mirror the load of non-Tierra processes on the machine (the speed of Tierra is high when the load from other processes is low).  Thus the speed of Tierra will vary with the load on the machine.  Also, when the user of a machine touches the keyboard or the mouse, Tierra immediately sleeps for ten minutes (from the last hit).  We expect the heterogeneity in available CPU cycles to provide selective forces which contribute to maintaining cell differentiation.


	The work reported here is based on a small-scale experiment conducted on a local-area network of about sixty sparc stations running unix.


Sensory System


The sensory mechanism has been described previously (Ray 1997, In Press), and so will be described only briefly here.  Each Tierra server periodically sends a Tping data structure to all the other Tierra servers.  In the current experiment, the structure contains the following entries (I32s is a 32 bit signed integer, I32u is a 32 bit unsigned integer):





struct TPingData /* data structure for Tping message */


{  I32s t; /* tag for message type */


    I32u address.node; /* IP address of node */


    I32u address.portnb; /* port number of socket */


    I32s cellID; /* unique identifier of organism in soup */


    I32s ranID; /* unique identifier, across network */


    I32s FecundityAvg; /* average fecundity at death */


    I32s Speed;  /* average instructions/second */


    I32s NumCells; /* number of organisms on node */


    I32s AgeAvg; /* average inst age at death */


    I32s SoupSize; /* size of memory for Tierra soup */


    I32u TransitTime; /* in milliseconds */


    I32u Fresh;  /* clock time at last refresh of this data */


    I32u Time; /* clock time at node */


    I32s InstExec; /* age of this Tierra process */


    I32s InstExecConnect; /* age while connected to net */


    I32s OS; /* operating system tag */


};





We will describe only those structure elements that are new in the current work, or which are mentioned elsewhere in this report.


Table � SEQ Table \* ARABIC �1�: Genetic Change in each gene of seven genomes
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Left columns are the run number, and age of the genome in days.  Top row is the name of each of the six genes and ten sub-genes.  Second row is the size of the gene in the ancestor.  Remaining rows are the percentage change in the gene.  * indicates that the gene is present in the genome, but is not expressed.  – indicates that the gene has been lost from the genome.


	address.node - is the 32 bit IP address of the machine from which this data came.  This data is used by the organisms to specify the address of the machine that they will migrate to.


	FecundityAvg - is the fecundity (number of offspring produced) at death or migration, averaged over all the organisms on the machine over the last million instructions executed.


	Speed - is the speed of the virtual CPU in instructions per second executed, calculated over the last million instructions.


	NumCells - is how many organisms are living on the machine at the time that the data structure is generated.


	AgeAvg - is the age at death or migration, averaged over all the organisms on the machine over the last million instructions executed.  The age is measured in virtual instructions executed by the individual organism.


	InstExec, InstExecConnect - how many millions of instruction the Tierra process has been running, the age of the “island”.  InstExecConnect is how many millions of instructions the process has been running while connected to the network.  The unix machines in our network are always connected to the network, so these two values are the same.  They would differ on machines that are only intermittently connected to the network.


	Each Tierra server maintains a “map file” which is a list of Tping data structures from all the machines on the Tierra network.  Digital organisms are born with a pointer into the list of Tping structures.  The location of the pointer in the list is randomly initialized at birth.  Each time the organism executes the getipp instruction, one Tping data structure is written into the soup at a location specified by a value in a CPU register, and the pointer into the list is incremented, with wrap-around.


Genetic Operators


The central problem of the Tierra experiment is to find the conditions under which evolution can generate complexity.  One primary consideration is to have a highly evolvable genetic language.  The evolvability of a genetic language is not determined by its structure alone, but also by the nature of the genetic operators, and the interaction between the two. 


	The Genetic Programming of Koza (1992, 1994) and the Genetic Images of Karl Sims (1991) have shown a very high level of evolvability, perhaps due in part to the power of their genetic operators.  Both use genetic languages based on Lisp trees.  The genetic operators manipulate the Lisp trees by replacing nodes in the trees (mutation), or by swapping nodes along with all their descendant branches between trees (cross-over). 


	The genetic operations on Lisp trees cause entire (perhaps coherent) sections of code to be moved around between genomes.  Contrast this with the genetic operators of the original Tierra which do nothing more than flip bits in the linear genome.  In order to enhance the power of genetic operators in Tierra, insertion, deletion and crossover have been added.  In addition, the mutation operator has been enhanced to take two forms.  One involves a bit flip, as in the original Tierra.  The new form of mutation involves the replacement of a machine instruction with any other instruction chosen at random from the set of sixty-four instructions.  The new genetic operations are performed on a daughter genome, just before it is born.  In the runs described in this manuscript, the rates of each of the different kinds of genetic operations were all set to the same values: each class of operation affects one in thirty-two individuals born.


Results


Genetic Change


Table 1 illustrates the magnitude of genetic change in each of six major genes and ten sub-genes, in each of seven genomes sampled from the end of seven runs ranging from six to fourteen days.  The changes are expressed as a percentage of the original gene.  For example, if ten instructions are mutated (or inserted) in a twenty byte gene, the change will be 50%.  If  thirty bytes are inserted into a twenty byte genome, the change will be 150%.


Table 2: Sources of Genetic Change


Genetic Operation�
Number of Events�
Bytes Affected�
�
mutation�
263�
263�
�
one-byte-insertion�
9�
9�
�
one-byte-deletion�
15�
15�
�
multi-byte-insertion�
20�
154�
�
multi-byte-deletion�
11�
64�
�
rearrangement�
2�
83�
�
end-loss�
2�
125�
�
	Table 2 summarizes the source of the genetic changes, based on the same data as Table 1.  Examination of the seven genomes of Table 1 revealed the following classes of genetic changes: Mutation - mutations are the result of flipping one bit in the six-bit machine instruction, or of replacing a machine instruction with one of the sixty-four instructions chosen at random.  This analysis did not discriminate between the two types of mutation.  Single-byte-insertion - the insertion of a single machine instruction into the genome.  This kind of genetic change may be caused as a side-effect of flaws in the increment and decrement instructions during the copying of the genome.  Single-byte-deletion - the deletion of a single machine instruction from the genome.  Like the single-byte-insertion, this may also be a side-effect of flaws.  Multiple-byte-insertion - The insertion of a sequence of more than one machine instruction into a genome.  This could be caused by the insertion genetic operation.  Multiple-byte-deletion - The deletion of a sequence of more than one machine instruction from the genome.  This could be caused by the deletion genetic operator.  Rearrangement - A change in the order of segments of the genome.  This might be caused by some combination of insertion, deletion, or crossover genetic operators.  End-loss - A couple of examples were seen in which a segment of code was lost from the end of the genome.  This might be essentially the same process as the multiple-byte-deletion, or it might be a different process. 


	Mutation is by far the predominant source of genetic change (preserved by selection), in terms both of the number of genetic events, and the amount of code affected.  The next most common source of genetic change is multiple-byte-insertion, with an order of magnitude fewer events, but affecting more than half as much genetic code.  The distribution of the various types of genetic change within the genome is very heterogeneous.  For example, the twelve byte gene copL, makes up 4% of the genome, but contains 55% of the multi-byte-insertion events.


Gene Duplication


The insertion and cross-over genetic operations cause segments of code to be moved about within or between genomes.  In some instances, this results in a duplication of a segment of code within a genome.  This duplicated code might or might not correspond to our arbitrary labeling of the code as genes or sub-genes (Figure 1).


	While we have observed many of these duplications, the most interesting examples have involved the complete duplication of functional algorithms which are called as sub-routines: either the cop gene, or the dev gene, or both together.  We have observed instances of each of these duplications in which one copy of the duplicated gene is expressed in the reproductive tissue while the other copy is expressed in the sensory tissue (Figure 2).





Figure 2: Gene Duplication
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	At the time of duplication, both copies of the gene are generally identical.  However, when the duplicated condition survives for prolonged periods of time, the two copies do diverge substantially in their structure and function.


Reproductive Algorithm


The reproductive algorithm relies on a twelve-byte copy loop (the copL gene) to perform a string-copy operation on the genome, resulting in the genetic code being copied from mother to daughter.  The algorithm of the ancestor copies one byte for each iteration of the loop.


Figure 3: Developmental Pattern
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Table 3: Thread & Decision Structure
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	In the original Tierra experiments, it was observed that this algorithm sometimes evolved an optimization known as “unrolling the loop”, in which efficiency is increased by copying more than one byte in each iteration.  In the original Tierra, the unrolled loops copied two or three bytes (Ray 1994a).  In the current experiment, we have observed loop unrollings of two, four and six bytes. 


Developmental Pattern


Figure 4: Sensory Tissue Developmental Cycle
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The development of the ancestor from the one-cell embryonic stage to the mature ten-cell stage is illustrated in Figure 3.  The undifferentiated original cell splits into two cells.  Soon after this first division, the differentiation event occurs (a conditional jump in the machine code), causing one cell to become a reproductive cell, and the other to become a sensory cell.  Subsequently, the reproductive cell divides once to form a two-celled reproductive tissue.  The sensory cell goes through three division cycles to form an eight-celled sensory tissue.


	Once the sensory tissue has reached the mature eight-cell form, it exhibits further developmental changes (Figure 4).  Each of the eight sensory threads executes a getipp instruction to obtain a Tping data structure.  These are then reduced to the single “best” data through a series of three pair-wise comparisons (see the Sensory Processing section below).


	Just before each pair-wise comparison, half of the threads halt (half of the cells die).  The cells which remain alive compare two neighboring data structures, and if the one on the right is “better” that the one on the left, the data is copied.  The data is copied by calling the cop gene (which is also used by the reproductive tissue to copy the genome).  The cop gene parallelizes its data copy function by splitting into multiple threads.  When called from the sensory tissue, eight threads are used to copy the Tping data (if all four of the sensory threads doing the comparison should decide to copy the data, a total of thirty-two threads would be active simultaneously in the sensory tissue).  After the data is copied, seven of the eight data copy threads halt.


	At the end of the data reduction, only one of the eight sensory threads remains, but it splits into eight threads again to repeat the process, in an infinite loop.  Similarly, after the genome has been copied by the two reproductive threads, one thread halts, and the remaining thread executes the divide instruction, spawning the daughter as an independent process, and potentially causing her migration.  Then, the single reproductive thread splits into two threads again, and repeats the reproductive process in an infinite loop.


	Table 3 presents a summary of the evolutionary changes in the configuration of the tissues.  The first column lists the run number and the date of the sample in run-yymmdd format (for each of seven runs), or the name of the ancestral genome.  The second column shows the configuration of the reproductive tissue, in the format: NxR, where N is the number of threads used to copy the genome, and R is the “redundancy” of the reproductive tissue.


Figure 5: Sensory Processing
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The thick box on the left is the 320 byte genome marked with the divisions into genes and sub-genes.  The thin box to its right is the 512 byte data area marked with the eight 64 byte Tping data buffers.


	The reproductive tissue often manifested a redundancy of function.  For example, a reproductive tissue might use eight cells to copy the genome, with each cell copying one-eighth of the genome.  However, this entire configuration might be duplicated, so that there are actually sixteen reproductive cells, working as two groups, with each group of eight dividing the genome into eight parts in the same way.  In this case, eight of the sixteen reproductive threads would be redundant.  This case would appear in column two as: 8x2.


	The third column shows the configuration of the sensory tissue, in the format: SxC, where S is the number of sensory threads which obtain Tping data (right part of Figure 3), and C is the number of threads used to copy the Tping data (middle of Figure 4) if the decision conditions (columns four and five) are met.


	The first three rows of Table 3 show the structure of the three ancestral organisms used to seed the run: 960aad, 960aae, and 960aaf.  All three have the same configuration of tissues: 2x1 8x8.  After listing the seed organisms, we show the result typical of all runs before November 1997, listed next to the date 971001.


	In all runs before November 1997, the sensory tissue was completely lost, and the reproductive tissue expanded to the limit of 256 cells.  In order to migrate or send daughters to other machines on the network, the digital organism must suggest the IP address of the other machine.  In early runs, we allowed any suggested IP address to be mapped to a valid address by finding the closest hamming-distance match in the map file.  In these runs, loss of the sensory system and expansion of the reproductive tissue resulted in the 256x1 0x0 configuration shown for the 971001 date.  In later runs, we required suggested IP addresses to be valid.  In these runs, loss of the sensory system and expansion of the reproductive tissue resulted in the 255x1 1x0 configuration (which also occurred in run six).


	At the end of October ’97 some bugs were fixed which resulted in the survival of the sensory tissue through prolonged periods of evolution.  An example of a bug that led to the selective elimination of the sensory system was the resetting of the pointer into the list of Tping data structures to zero, after its original random initialization.  This had the consequence that all individuals in the population (of ancestral algorithms) could only sense the first fifteen machines on the net, regardless of the number of machines actually present in the network.


	After fixing the bugs in the sensory system, the sensory tissue survived through prolonged periods of evolution in most runs.  The structure of the developmental pattern and the resulting relative and absolute numbers of cells in the two tissues changed to the many forms listed in columns two and three of Table 3.


Sensory Processing


The ancestral organism includes a 512 byte data area where it can hold sensory data.  Each cell of the eight-cell sensory tissue reads a sixty-four byte Tping data structure into one of eight offsets into the data area.  Each of the Tping structures contains data about the conditions on a different machine on the network.  The sensory algorithm then undertakes a series of three pair-wise comparisons (Figure 5), to select the best machine to send the daughter to at the time of its birth.  At the completion of the series of comparisons, the best looking data structure will be at the left-most position (zero offset) in the data area.  The reproductive algorithm looks in this location for the IP address of the machine that it will send the daughter to.


	The algorithm of the sensory tissue is an infinite loop, so that after the completion of the first cycle of three pair-wise comparisons, the entire sensory process repeats.  After the first sensory cycle, only seven of the eight sensory threads write another Tping structure to the data area (the left-most data is preserved into successive cycles).  During the time that it takes the reproductive tissue to copy the genome, the sensory system is able to complete two cycles, having collected and processed data from fifteen machines on the net.


	The overall scheme of sensory data processing by multi-threaded sensory tissues tends to be preserved through evolution.  However, there is a tendency for the reproductive algorithm to optimize, completing its function more quickly, with the result that the sensory system will be able to process less data before the results are needed by the reproductive tissue.


	In some runs, the sensory processing algorithm evolved into a relatively simple form in which only a single buffer was used for storing the Tping data structure.  In this case, the getipp instruction is used to read a structure into the buffer.  Then a test such as 256 > Speed is performed, and if true, another getipp instruction is executed with the result that the previous data is replaced with new data.


Sensory Data Selection


The algorithm by which Tping data is selected is represented in columns four, five, and six of Table 3.  If the value in column four is less than or equal to the value in column five, then the action in column six is performed.  Two different actions are represented in column six: cd - copy the Tping data on the right over the Tping data on the left; gt - get another Tping data structure from the map file list.  The values listed in columns four and five include data from the Tping structures, and constant values.  The symbols used for the Tping entries are: s - Speed; n - NumCells; f - FecundityAvg; i - InstExecConnect; a - AgeAvg.  In some cases two or more of these variables or constants are combined by the arithmetic operations of addition, subtraction, multiplication or division (+ - * / respectively).


	In the studies reported here, all but the first of the seven runs were initiated with a mixture of three different ancestral genomes, using three different selection algorithms (top three rows of Table 3).  960aad copies the Tping data if Speed/NumCells <= Speed/NumCells; 960aae if FecundityAvg <= FecundityAvg; and 960aaf if FecundityAvg*Speed <= FecundityAvg*Speed.


	It is likely that after a few generations of reproduction, an ecological process of competitive exclusion will result in a population that is entirely descended from only one of the three ancestors.  Comparison of sequence similarity between the evolved organisms of Table 1 and the three ancestors reveals that in some runs, the population descended from the Speed/NumCells algorithm, and in other runs from the FecundityAvg*Speed algorithm.


	Evolution has also produced a diversity of sensory data selection algorithms.  The element of the Tping data structure most commonly used by these algorithms is Speed.  However, the algorithms also commonly integrate data other than elements of the Tping structure, such as some constant value.  For example, copy data if Speed (on the left) <= 256 


	The “-” symbol in columns four and five of the table indicate that the action in column six is performed unconditionally.  The result in all of these cases is that the node to which the organism or its daughter migrate is chosen essentially at random.  This is the situation found when the sensory system is completely lost through evolution (971001 and run 6).  We call these organisms “map-file-scanners”, because they constantly get new IP addresses from the map file, and then send the daughter (or migrate) to whatever address has been most recently accessed, by chance, when the reproductive process is completed.  The notation “1 gt” in column six indicates that the program only gets one Tping data structure, and uses its IP address as the migration destination.  Since the pointer into the map file is initialized at random, this is another random method of node selection.


	The selection mechanism for the 7-971223 organism is unique, in that it uses two conditionals, both from the data on the left.  If s <= 4096 and n <= 28, the data on the right is copied over the data on the left.


Migration Patterns


At the completion of the reproductive cycle, the network ancestor causes its daughter to be sent to another machine at birth.  The IP address of the target machine is taken from the Tping data analyzed by the sensory system.  One change that commonly occurs through evolution is for the daughter to be born locally (on the machine where the mother lives), and for the mother to then immediately move to the machine whose IP address was recommended by the sensory system.  Another common pattern is for the mother to send the daughter to another machine, and then to immediately follow the daughter to that machine.


Discussion


Genetic Change


The magnitude and source of genetic change preserved by selection varies greatly between genes.  For example the developmental genes dif and dev are rarely altered, while copL which contains the critical code for copying data, often experiences large changes.  In addition, the genetic operations predominantly responsible for the genetic changes vary widely between different parts of the genome.


	The copL gene achieved higher levels of unrolling in this experiment than in the original Tierra. The large magnitude of change in this gene can be understood in terms of strong selection pressure for efficiency of copying data, combined with an accessible pathway for change with the genetic operators available (increasing levels of loop unrolling).


	The sensory genes also show a high level of genetic change, but we suggest a different interpretation.  It appears that the selective pressures on the sensory system are not as intense.  The organisms can survive and reproduce without the sensory system, whereas the copL gene is essential for reproduction.  Thus the high level of genetic change in the sensory genes may be due to lower selective pressures permitting higher levels of variation to survive.


	These observations seem quite significant in the context of understanding the issue of evolvability (in fact like complexity, we don’t have an adequate definition of evolvability).  If we were to attempt to judge the evolvability of the system described here, we would reach very different conclusions from examining the changes exclusively in different parts of the genome.  For example, evolvability seems to be high in the copL and sen genes, but low in the dif, dev, and repS genes.  At the same time, the causes of the high degree of genetic change in the copL and sen genes seem to be quite different.


Figure 6: Mob Behavior
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Gene Duplication


The phenomena of gene duplication in which both copies of the gene are expressed, but by different tissues is surprising and quite interesting.  Gene duplication and subsequent divergence of the sequence and function of the two copies of the gene is believed to be a primary mechanism for the increase in the complexity of genomes in organic evolution.  It appears an analogous process has occurred, or at least begun, in this experiment.


Sensory Data Selection


The ancestor organisms were written with sensory data selection algorithms that seem “smart” to their designers.  Sometimes, apparently smart algorithms have been present in the later stages of evolution.  However, it is often the case that the evolved algorithms appear to be less smart.  However, they may none-the-less be good adaptations to the environment in which the organisms live.


	A predominant feature of the environment is the presence of other organisms, and their behavior.  One of the most difficult problems in designing a sensory data selection algorithm is that if one specific algorithm comes to dominate the network-wide population, then most organisms will tend to make the same choices.  This can result in a “mob” behavior, Figure 6.


	Tests with the Speed/NumCells ancestor algorithm in a four node network (with genetic operations turned off to prevent evolution) revealed a severe problem.  One of the four machines had a far faster processor, resulting in a consistently high value of Speed on that machine.  The high Speed caused a high Speed/NumCells ratio, making it the machine of choice for the entire network-wide population.  The result was that all daughters born on all machines were sent to this one machine.  In effect, there was no birth or immigration on the other three machines.  Thus the original organisms on those three machines lived indefinitely, accumulating very high fecundities (and associated Darwinian fitness).


	Meanwhile, on the selected machine, there was a huge influx of immigration, in addition to the local reproduction.  The result was a rapid flux of organisms (for each birth or immigration, the reaper must kill an existing organism to make space) such that few if any individuals survived long enough to reproduce.  Thus the average fecundity (and Darwinian fitness) on the selected machine was near zero.  Because the soup size on this machine was fixed, it was not possible for growth of the population to lower the Speed/NumCells ratio to a level comparable to the slower machines.


	The consequence of the use of the Speed/NumCells algorithm throughout the small network was a mob behavior that created a fitness landscape within which using the algorithm was the worst thing possible.  Even random selection of machines would have been better.  The severe mob behavior seen in a small network is diffused somewhat in a larger network, because the individual organism does not have time to examine data from all machines.  The ancestor is able to look at fifteen machines for each reproductive cycle.  Because the pointers into the list of machines are initialized at random, each organism will look at a different list.  However, there remains an underlying dynamic, in which some machines tend to be chosen by any organism that looks at them, generating some mob behavior.  In Figure 6 the favored machines are represented by the heavy circles.


	Selection algorithms such as 256 <= Speed appear to be relatively dumb, but they may have the selective advantage of reducing the mob effect by making the choice of machines more fuzzy.


Loss or Degradation of Sensory System


While this experiment demonstrated that the sensory system is able to survive long periods of evolution, some of the runs showed a complete loss or a serious degradation of the sensory system (Tables 1 and 3).  We believe that the primary selective factor for maintaining the sensory system is the temporal heterogeneity in the availability of CPU cycles to the Tierra process, due to the activity patterns of the human users of the machines in the Tierra network.


	This experiment was conducted in a local-area network at ATR, where there are some fairly obvious patterns of human activity.  ATR is in a somewhat remote location, and most researchers commute by company bus.  The bus service is available from 7:40 am to 10:00 pm on weekdays only.  There is no bus service on weekends or holidays.  Most researchers arrive between 8:00 am and 10:00 am, and leave between 6:00 pm and 8:00 pm, on weekdays only.  The data reported in this study covers the period of November 1 through January 14.  In this period, weekends and holidays fell on: Nov 1-3, 8-9, 15-16, 22-24, 29-30; Dec 6-7, 13-14, 20-21, 23; Dec 27 - Jan 4; Jan 10-11.


	We can expect that an important component of the selective pressure for maintaining the sensory system will be relaxed on weekends, holidays, and weekdays from mid-evening to mid-morning.  We suspect that this relaxation of selective pressures may partially explain the occasions of loss of the sensory system.  It is worth noting that the sensory system was lost from the outset of run six, during the business week.  However, this run was initiated in the mid-evening and probably lost its sensory system before ever experiencing the relevant selective pressures.  We are preparing to test the pattern of loss of the sensory system against quantitative measurements of temporal heterogeneity in human activity in the network.


Migration Patterns


There is an obvious benefit to the behavior of the mother migrating after reproduction, rather than remaining on the local machine to attempt a second reproduction.  When a creature moves to another machine, it enters the bottom of the reaper queue (Ray 1991).  By moving after reproduction, the mother effectively delays her death.  


	There are however some costs to the migration of a mature organism.  If the Tierra process is sleeping on the target machine (due to user activity) the migrating genome can die as a result of having its packet(s) lost in the network.  Furthermore, upon arrival, the formerly mature organism reverts to an essentially embryonic, one-celled state.  It must then go through the developmental process leading to the mature ten celled state, before it can begin the reproductive and sensory cycles.  In addition, through migration, all sensory data is lost, whereas the mature organism which does not migrate would retain the selected sensory data in its left-most Tping data buffer.





Conclusions


The central objective of this project is to study the conditions under which evolution by natural selection leads to an increase in complexity of the replicators.  For the purpose of this study, the primary quantitative measure of complexity is the level of differentiation of the multi-celled organism.  The study begins with the most primitive level of differentiation: two cell types.  There are two milestones in the study: 1) The differentiated state persists through prolonged periods of evolution.  2) The number of cell types increases through evolution.


	In the work reported here, only the first of these two milestones has been achieved.  There has been no sign of an increase in the number of cell types.  However, the process of gene duplication with differential expression of the resulting genes is a kind of proto-differentiation event.  This process offers some prospect of leading to new cell types.


	Observations of a high degree of heterogeneity in the magnitude, source, and possible selective dynamics for genetic change in different parts of the genome provides raw data for our efforts to understand the nature of “evolvability”.  A practical understanding of evolvability, leading to an ability to design higher levels of evolvability into our synthetic evolving systems is crucial for progress in the area of evolutionary systems.


	The ultimate imperatives in evolution are survival and reproduction.  In the context of self-replicating computer programs, it is not obvious how selection can favor any behavior beyond the efficient replication of the genome.  However, in this experiment we demonstrate that selection can favor the ability to gather information about conditions in the environment, analyze that data, and use the results of the analysis to control the direction of movements.


	Digital organisms essentially identical to those of the original Tierra experiment, were provided with a sensory mechanisms for obtaining data about conditions on other machines on the network; code for processing that data and making decisions based on the analysis, the digital equivalent of a nervous system; and effectors in the form of the ability to make directed movements between machines in the network.  This sensory-nervous-effector system required 157 bytes of genetic code, compared to 136 bytes for the reproductive system alone.  In addition, the sensory system required a data area almost twice the size of the entire genome.  This sensory system is not “hard-coded”, in the sense that it is not essential for survival and reproduction in the network, and it can be lost if selection does not maintain it in the face of degradation by genetic operations.  Yet selection maintained this large burden of additional complexity due to the selective benefits of gathering, processing, and acting upon information about the environment.


	The migratory patterns of the digital organisms themselves become an important part of the fitness landscape in the network.  The algorithms of the seed organisms generate an unfit (in the Darwinian sense) mob behavior by causing all individuals in the network to migrate to the “best” looking machines.  Evolution resolves this problem by changing the algorithm to simply avoid poor quality machines.
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