
To appear in theProceedings of Artificial Life IV, R. Brooks and P. Maes (eds.), MIT Press: Cambridge, July 1994.

Evolving Multi-cellular Artificial Life

Kurt Thearling Thomas S. Ray
Thinking Machines Corporation ATR Human Information Processing Lab
245 First Street 2-2 Hikaridai, Seika-cho, Soraku-gun
Cambridge, MA 02142 Kyoto 619-02 Japan

kurt@think.com ray@hip.atr.co.jp

Abstract
In this paper we describe a number of experiments in
which the ideas of multi-cellular evolution are applied to
digital organisms in an artificial ecology. The individual
organisms are parallel programs in a shared memory vir-
tual computer where evolution by natural selection is
shown to lead to increasing levels of parallelism.

1 Introduction
One of the greatest challenges in the development of nat-

urally evolving artificial systems is crossing the threshold
from single to multi-cellular forms. From a biological per-
spective, this transition is associated with the Cambrian ex-
plosion of diversity on Earth. During the Cambrian explo-
sion, most of the complexity that we see in living organisms
emerged rather abruptly some six hundred million years ago.
The work presented in this paper is based on the Tierra sys-
tem [2] in which the evolving entities are self-replicating ma-
chine code programs. Multi-cellular digital organisms are
parallel processes. From the computational perspective, the
objective is to use evolution to explore the as yet under-ex-
ploited possibilities inherent in parallel processing.

Transferring the concept of multi-cellularity from the or-
ganic to the digital domain could take many forms. To make
the transfer we must first understand what the most basic, es-
sential, and universal features of multi-cellularity are, and
then determine the form that these features would take in the
completely different physics of the computational system into
which evolution is being introduced. The features that we will
capture in the present model are: 1) that multi-cellular organ-
isms originate as single cells, which develop into multi-celled
forms through a process of binary cell division; 2) that each
cell of a multi-celled individual has the same genetic material
as the original cell from which the whole developed; and, 3)
that the different cells of the fully developed form have the
potential for differentiation, in the sense that they can express
different parts of the genome (i.e., each cell can execute dif-
ferent parts of the program).

In the digital metaphor of multi-cellularity, the program is
the genome, and the processor corresponds to the cell. In or-
ganic biology, there is at least one copy of the genome for
each cell, because genetic information can not easily be
shared across cell membranes. In most current parallel archi-
tectures, the same holds: since memory is not shared, there is
an area of memory associated with each processor (cell), and
there must be at least one copy of the program code in the

memory of each processor. This provides a very simple mod-
el of multi-cellularity: each digital cell consists of a unique
block of memory with its own copy of the program and its
own processor.

However, if the parallel machine has a shared memory ar-
chitecture, making copies of the genome for each cell need-
lessly wastes memory and processing time (to copy the genet-
ic information). In this context evolution by natural selection
would not likely find any advantage in such waste. Thus a
more logical and efficient implementation in this evolution-
ary context is to share a single copy of the program in a single
block of memory among multiple processors. Each cell in a
single organism corresponds to a parallel processor. Multi-
cellularity can develop from a single original processor
through a process analogous to cell division. The initial cell
(processor) can issue an instruction which would then create
another cell (a parallel processor). They may exhibit cell dif-
ferentiation by having different processors executing differ-
ent parts of the shared program. Obviously all cells will con-
tain the same genetic material, since there actually will be
only one copy per multi-cellular individual. The work pre-
sented in this paper is based on this shared memory model of
multi-cellularity.

2 Tierra
The Tierra system has already been described in detail

elsewhere [2-5] so it will be described only briefly here. The
software used in this study is available over the net or on
disk1. A new set of computer architectures and associated
machine code have been designed to withstand the genetic
operations of mutation and recombination. This means that
computer programs written in the machine code of these ar-
chitectures often remain viable after being randomly altered
by bit-flips which cause the swapping of individual instruc-
tions with others from within the instruction set, or by swap-
ping segments of code between programs (through a sponta-
neous sexual process). These new computers have not been
built in silicon, but exist only as software prototypes known
as ‘‘virtual computers,’’ and have been called Tierra, Spanish
for Earth.

Initially a self-replicating program was written in Intel
machine language. This program was then implemented in

1. The complete source code and documentation (but not exe-
cutables) is available via anonymous ftp from tierra.slhs.udel.edu
and life.slhs.udel.edu in the file: tierra/tierra.tar.Z.

2

the first Tierran language in the fall of 1989. The program
functions by copying itself one byte at a time to another loca-
tion in memory and dividing (i.e., giving the copy its own in-
struction pointer). Subsequently, both programs replicate,
and the number of programs ‘‘living’’ in memory doubles in
each generation.

These programs are referred to as ‘‘creatures’’ or ‘‘organ-
isms.’’ The creatures occupy a finite amount of memory
called the ‘‘soup.’’ The operating system of the virtual com-
puter, Tierra, provides a ‘‘slicer’’ service to allocate CPU
time to the growing population of self-replicating creatures.
When the creatures fill the soup, the operating system invokes
a ‘‘reaper’’ facility which kills some creatures to insure that
some memory will remain free for occupation by newborn
creatures. Thus a turnover of generations of individuals be-
gins when the memory is full.

The operating system also generates a variety of errors
which act as mutations. One kind of error is a bit-flip, in
which a zero is converted to a one, or a one is converted to a
zero. This occurs in the soup, which is the RAM memory
where the ‘‘genetic’’ information that constitutes the pro-
grams of the creatures resides. The bit-flips are the analogs of
mutations, and cause swapping among machine code instruc-
tions. Another kind of error imposed by the operating system
is called a ‘‘flaw.’’ A flaw causes possible errors in calcula-
tions taking place within the CPU of the virtual machine,
slight alterations during the transfer of information, or error
in the location of memory accesses.

The machine code that makes up the program of a crea-
ture is the analog of the genome, the DNA, of organic crea-
tures. Mutations cause genetic change and are therefore heri-
table. Flaws do not directly cause genetic change, and so are
not heritable. However, flaws may cause errors in the process
of self-replication, resulting in offspring which are genetical-
ly different from their parents. Those differences are then her-
itable.

The self-replicating program (creature) running on the
virtual computer (Tierra), with the errors imposed by the op-
erating system (mutations) results in precisely the conditions
described by Darwin as causing evolution by natural selec-
tion [1]. This is therefore an instantiation of Darwinian evo-
lution in a digital medium.

2.1 Adding multi-cellularity to Tierra
To implement the ideas of basic multi-cellularity, two ad-

ditional Tierra machine instructions had to be created to allow
the digital organisms to carry out development. The most ob-
vious candidate for inclusion was an instruction that would
create an additional CPU for the creature. This process was
modeled on binary cell division on purpose so that the execu-
tion of this instruction (which is calledsplit) takes a single
processor (CPU) and produces two CPUs upon completion of
the split. When a creature is given a new time-slice by the
Tierra simulator, each CPU in that creature is allocated its
own copy of that time-slice.

The process of executing asplit instruction follows. A
new CPU is created for the current creature. The registers,
stack, and IP for this new CPU are copied from the CPU that
issued thesplit instruction. To differentiate between the

CPUs after splitting, the DX register of each CPU is modified
by shifting the value one bit to the left, and for the new CPU
a value of 1 is added. As a result, each CPU’s DX register has
a different value after thesplit. If a sequence ofsplit instruc-
tions is considered, the DX registers of each of the parallel
CPUs within the creature will contain the address of their po-
sition in a binary tree of splits. For example, consider the fol-
lowing code fragment (assume that code is initially executed
by a single CPU creature):

split ; create 2 CPUs
split ; split both CPUs, creating 4 CPUs

During the first split the DX registers for both CPUs are
modified, first by shifting left by one bit (which has no effect
since it is assumed that the DX register has previously been
initialized to zero) and then by adding a value of 1 for the new
CPU. Both CPUs then execute the secondsplit instruction,
creating two more new CPUs. The leftward shift and condi-
tional addition to the DX register causes the four CPUs to end
up with DX values of 00, 01, 10, and 11. This enumerates all
four CPUs with different DX values from zero to three. In
parallel processing terminology, the DX register contains the
‘‘self-address’’ of the parallel CPU.

In addition to thesplit instruction, an additional parallel
construct was implemented: thejoin instruction. Once a CPU
issues ajoin it waits until all other CPUs have also issued a
join . Then all CPUs, other than the original single cell CPU,
terminate. Thejoin instruction was created to overcome Tier-
ra’s limitation of allowing only one CPU in a creature to issue
a divide without causing an error. It was decided that an ap-
propriate way to deal with this limitation was for each CPU
to issue ajoin immediately before attempting to divide moth-
er and daughter. There is no real organic biological analogy
to thejoin instruction. It was introduced because it is a useful
parallel programming tool. Another possible solution would
have had a creature conditionally executing thedivide in-
struction so that only one CPU actually performed the divi-
sion of mother and daughter.

2.2 First steps
As with the original Tierra research, an ‘‘ancestor’’ was

created to inoculate a new soup. The first parallel ancestor
was designed to be very similar to the original serial ancestor
described in [2]. Using thesplit andjoin instructions, it was
possible to modify the original single celled ancestor and par-
allelize its functionality. The operation of the original single
cell ancestor (as described in [2]) follows.

The ancestor first examines itself to determine where in
memory it begins and ends. This is done by searching back-
ward for the template that appears at its beginning and then
searching forward for the template that matches its ending. To
determine its size, the beginning address is subtracted from
the end address. Space for the daughter is then allocated using
this size information. The ancestor then calls the copy proce-
dure which copies the entire genome into the daughter cell
memory, one instruction at a time. Once the genome has been
copied, it executes thedivide instruction, which causes the
creature to lose write privileges on the daughter cell memory,
and gives an instruction pointer to the daughter cell (it also
enters the daughter cell into the slicer and reaper queues). Af-

3

ter this first replication, the mother cell does not examine it-
self again; it proceeds directly to the allocation of another
daughter cell, then the copy procedure is followed by cell di-
vision, in an endless loop.

Only the copy loop was parallelized in the parallel ances-
tor, with one CPU copying half of the genome and another
CPU copying the rest. Currently there is an arbitrary limit of
sixteen CPUs per organism. The parallel ancestor uses only
two CPUs. Any additional parallelism would have to evolve.
The basic approach to parallelizing the single celled ancestor
was tosplit immediately after allocating space for the daugh-
ter cell and to perform ajoin immediately before thedivide.
Within the copy loop the first CPU will copy the even num-
bered instructions and the second CPU will copy the odd
numbered instructions.

Unfortunately the original instruction set was not very
rich in its ability to manipulate registers. In fact, there was no
way to operate using the DX register directly and therefore
differentiating between parallel CPUs was very difficult. To
operate on the DX register, it was necessary to push DX onto
the stack and then pop it off into one of the registers that could
be operated on. For example, consider the process of aligning
one of the two parallel CPUs to copy the odd numbered in-
structions, conditional on the value in the DX register. The
following code fragment performs this task:

pushC ; save the CX register on the stack
pushD ; push DX onto the stack
popC ; now pop the value from DX into CX
ifz ; if CX (aka DX) == 0
incA ; inc AX (destination) to odd align
ifz ; if CX (aka DX) == 0
incA ; inc BX (source) to odd align
popC ; return CX to its original value

Obviously it is difficult to achieve some fairly simple op-
erations using the available instructions. The major cause of
this difficulty results from an inability to act directly upon the
register used differentiate between multiple CPUs in an or-
ganism (DX). As a result, any evolutionary activity that in-
volves parallel CPUs must manipulate both the DX register as
well as any other registers it uses actually to perform the de-
sired operation. This greatly complicates the process and
makes evolutionary improvements much more difficult to
perform. Simple operations become somewhat ‘‘brittle’’ as a
result of this limitation.

Figure 1 illustrates reproduction time2 vs. time for a typi-
cal run using this instruction set. The new (parallel) ancestor
starts out approximately twice as fast as the old ancestor, be-
cause it uses two CPUs rather than one. All of the evolution-
ary improvement is incremental, using serial processing im-
provements similar to the improvements in the original an-
cestor runs. No additional parallelism is added via evolution.
Also note that the same parasitism and other natural phenom-

2. Unlike the results presented in [2] which focused on creature size,
reproduction time is now used to describe the progress of evolution
of a digital organism. Since multiple CPUs are now possible within
a single creature, the relationship between size and reproduction
time is such that reproduction time is no longer directly inferrible
from the size. A long creature with many parallel CPUs might very
well reproduce faster than a short creature with few parallel CPUs.

ena that are described in [2] are observed in these new runs
with multi-cellular digital organisms, as well.

Figure 1: Evolution and the new (parallel) instruction set

2.3 Creating an evolvable parallel ancestor
This observed behavior was not unexpected. When the

second author originally developed the Tierra instruction set,
he first wrote the original ancestor and then included in the in-
struction set only those instructions which were used in that
ancestor. Since multi-cellular digital organisms are naturally
more complex than single cell digital organisms, an instruc-
tion set sufficient for a single cell organism would not neces-
sarily suffice for a parallel organism.

To alleviate some of these problems, several additional in-
structions were added. These instructions perform operations
that simplify the design of a multi-cellular ancestor. The first
instruction added waszeroD, which explicitly zeros out the
DX register. The second new instruction wasshr, a shift right
instruction for the CX register. Since the CX register typically
contains the creature’s size, ashr effectively divides the size
by two. When performed in conjunction with asplit, the CX
register is modified to contain the portion of the genome to be
copied by each parallel CPU.

The final two instructions that were added were based on
known techniques for distributing work among parallel pro-
cesses. An ‘‘offset’’ instruction takes the size (which is usu-
ally divided by the number of CPUs) and multiplies it by the
CPU’s self-address. This value specifies an offset into mem-
ory which evenly divides the memory among parallel CPUs.
When added to a base address, the value specifies where in
memory each parallel process should begin accessing data.
Two versions of the offset instruction were created for the
multi-cellular instruction set:offAACD and offBBCD. The
offAACD instruction multiplies the CX register (size) times
the DX register (self-address) and adds it to the AX register
(the base address). TheoffBBCD instruction is similar except
that BX is used instead of AX as the base register.

3 Evolution and Multi-cellularity
Using these new instructions, a new parallel ancestor was

created. The multi-cellular ancestor is very similar to the an-
cestor described in [2] and is composed of 82 instructions.

200 400 600 800

Time (millions of clock cycles)

0

100

200

300

400

500

600

700

R
ep

ro
du

ct
io

n
T

im
e

(c
lo

ck
 c

yc
le

s)

4

The copy loop is parallelized for two CPUs, with each CPU
copying half of the genome from mother to daughter (unlike
the previous scheme, one CPU copies the first half of the ge-
nome while the other CPU copies the second half).

Once the new and improved multi-cellular ancestor had
been created, any further improvements in its performance
would be generated through evolution. Comparing the multi-
cellular ancestor with its single celled cousin, the multi-cellu-
lar creature is clearly the more efficient reproducer. While the
single celled ancestor requires approximately ten clock cy-
cles per instruction copied, the multi-cellular ancestor re-
quires only five (since two CPUs are operating in parallel,
they are effectively doing the same amount of work in half the
time). As a result, a multi-cellular ancestor will produce near-
ly twice as many offspring as a single celled ancestor in the
same period of time. Obviously multi-cellular organisms will
have an advantage and will dominate the population.

Experiments were run using the multi-cellular ancestor on
a new version of Tierra3 that runs on a Connection Machine
CM-5 massively parallel supercomputer. By taking advan-
tage of the size and speed of a supercomputer, much larger
and faster evolutionary simulations have been achieved.

Figure 2 (top) shows a graph of reproduction time versus
time for the new multi-cellular ancestor. For the first 200 mil-
lion instructions, there is a gradual improvement in reproduc-
tion time due to optimizations such as template size reduction
and taking advantage of the side effects of some instructions
(upper band). In addition, there is also effective parasitism
(lower band) until approximately 150 million clock cycles at
which time most organisms become resistant to parasites.
This type of behavior also manifested itself in simulations us-
ing single cell organisms [2].

A sharp discontinuity then appears at approximately 215
million clock cycles and represents a thirty percent improve-
ment in reproduction time. This new optimization is added
parallelism, and it corresponds to an increase from two to four
CPUs per organism. In the genome length versus time graph
(center), this change is even more noticeable since the domi-
nating organisms have actually increased in size from 44 to
52. While the size 44 creatures have only two CPUs, the size
52 creatures have four. The larger but more parallel creatures
are faster reproducers and as a result take over the population.
This increase in parallelism is even more obvious when ex-
amining the graph of reproduction efficiency (the average
number of clock cycles necessary to copy a single instruction
from mother to daughter) versus time (bottom).

One noticeable characteristic the genome length versus
time graph shows is that when there are two CPUs, reductions
in size typically take place in multiples of two instructions.
When there are four CPUs per organism, the multiple increas-
es to four. Obviously the creatures are dividing the workload
evenly and are not able to handle circumstances which do not
provide even workloads. When the first size 52/four CPU
creatures appear, fifteen out of the 52 instructions are mean-

3. Although Tierra now runs on a parallel supercomputer, the paral-
lelism in the digital organisms is unrelated to the parallelism in the
computer that they are running on. Slower and smaller simulations
of multi-cellular creatures have been run on workstations.

ingless (i.e., these instructions do not affect the execution of
the creature’s algorithm). In some sense these instructions are
a form of computational intron, pieces of unnecessary code
left over from some dead ancestor. The introns are used to pad
out the size of a creature so that it is a multiple of four, sim-
plifying the distribution of work among the parallel CPUs.

Time (millions of clock cycles)

Figure 2: Various evolution characteristics vs. time

A large number of intron instructions are observed when
the first four CPU creatures appear. Through evolution, the
size of the creatures decreases to 48 (268 million clock cy-
cles), then 44 (346 million clock cycles) and finally to 40 (1
billion clock cycles). In each of these improvements, evolu-
tion simply removes some intron instructions while keeping
the length a multiple of four. If the intron instructions are re-
moved from the size 40, 44, 48, and 52 creatures, we find that
they are theexactsame algorithm. Obviously at that point in

100 200 300 400 500
 0

 100
 200
 300
 400
 500

R
ep

ro
du

ct
io

n
T

im
e

(c
lo

ck
 c

yc
le

s)

100 200 300 400 500
 0

 20
 40
 60
 80
 100

G
en

om
e

L
en

gt
h

(I
ns

tr
uc

tio
ns

)

100 200 300 400 500
 0

 1
 2
 3
 4
 5
 6

R
ep

ro
du

ct
io

n
E

ff
ic

ie
nc

y

5

the process, evolution has optimized the basic algorithm as
well as it can without major restructuring.

The size 40/four CPU creature that evolved from the size
82/two CPU ancestor is quite efficient in its use of parallel-
ism. The genome of one such creature (0040aba) is:

nop0 ; beginning template
adrb ; find beginning + template size
nop1 ;
subAC ; sub template size from beginning
movAB ; put beginning in BX
adrf ; find end
nop0 ;
nop0 ;
subCAB ; calculate size
mal ; allocate space for daughter
incC ; intron (since CX no longer used)
split ; 2 CPUs
ifz ; intron (since CX can’t be zero)
movCD ; intron (since ifz not true)
shr ; size = size / 2
offAACD ; split genome into 2 halves &
offBBCD ; adjust AX and BX accordingly
zeroD ; zero out DX before second split
pushB ; save beginning on stack
shr ; size = size / 2
split ; 4 CPUs
offAACD ; re-partition genome into 4 and
offBBCD ; adjust AX and BX accordingly
nop1 ; copy loop starts here
nop0 ;
movii ; copy instr from mother to daughter
decC ; decrement number of instr to copy
ifz ; if number of instr to copy == 0
jmp ; jump forward to just before join
nop0 ;
incA ; increment source address
incB ; increment destination address
jmpb ; jump back to start of copy loop
nop0 ;
nop1 ;
join ; join up multiple CPUs
divide ; divide mother and daughter
ret ; return to beginning of creature
nop1 ; ending template
nop1 ; ending template

The first thing to notice is that there are still three intron
instructions remaining. Simple removal of these introns is not
possible since the workload distribution among the four
CPUs requires the size to be a multiple of four. Unless the al-
gorithm is radically changed, it would be difficult to evolve a
more compact version of this creature. The first thing this
creature does is examine itself (beginning and ending) and
compute its size. It then allocates space for its daughter. This
process is common to almost all viable creatures in the soup.

The next thing that happens is that the creature splits into
two CPUs and then divides its size by two. The new size is
then used to offset the source and destination registers for the
move. Essentially one CPU copies the first half of the genome
while the other CPU copies the second half. The creature then
zeros out the DX register before splitting again, creating a to-
tal of four CPUs. Just before thesplit, the BX register (which
contains the address of the beginning of the mother) is pushed
onto the stack. This will be used later when the reproduction
process has completed.

After the secondsplit, the size once again divides by two,
leaving the CX register with a value of size divided by four.

Each CPU then offsets the source and destination registers
again. Since the CPUs had previously partitioned the genome
into halves, they are now hierarchically re-partitioning each
of the halves into quarters.

Once each of the four CPUs is set up to copy its quarter of
the genome, it enters a copy loop similar to the copy loop in
the multi-cellular ancestor. After the copy loop is complete,
each CPU waits for the others via ajoin , and once all four
CPUs have joined, the creature issues adivide for its daugh-
ter. After thedivide a return is performed, which pops the
stack into the IP. Since the beginning address of the creature
was previously pushed onto the stack, this return causes the
creature to start all over again at the beginning of its genome.

3.1 Taking advantage of its creator
In one of the first simulations (after the addition of the

new instructions), a very strange set of results was observed.
Somehow the creatures had increased their reproductive effi-
ciency so that it appeared to take only two clock cycles to
copy the mother’s entire genome to the daughter. Even if the
creatures had managed to make use of the maximum number
of CPUs allowed (sixteen), it would have been impossible to
reproduce that quickly. Somehow the creatures must have
taken advantage of a bug in Tierra enabling them to reproduce
faster than should have been possible. When one of these
creatures was examined, it appeared thus:

template marking beginning

split ; 2 CPUs
split ; 4 CPUs
split ; 8 CPUs

find beginning, end, and size

divide ;
mal ; allocate space for daughter

copy loop

For some reason the first thing that happens is the creation
of eight parallel CPUs. The creature finds its beginning and
end and calculates its size (typical for all creatures). But then
it attempts todivide, which won’t work since the daughter’s
space has yet to be allocated. The next instruction allocates
space for the daughter, which somehow seems to be in the
wrong order. Finally a copy loop is entered to copy the moth-
er’s instructions to the daughter’s space. According to the in-
formation saved about this genome, the mother and daughter
were genetically identical. Somehow this process must be
working correctly since it allows the mother to reproduce.

The key to understanding this process involves the way in
which thesplit instructions adds additional CPUs to a crea-
ture. In the original version of the multi-cellular Tierra simu-
lator, the execution of asplit instruction would cause a CPU
immediately to exit its time-slice. Any unused cycles left in
the time-slice would have been added to the time-slice that
both CPUs would receive the next time through the execution
queue. As a result of performing three splits in a row, the or-
ganism created eight CPUs. These eight creatures each exe-
cute (on average) three time-slice’s worth of instructions be-
fore moving onto the next parallel CPU. So, when the first of
eight CPUs issues thedivide, nothing happens (other than
setting an error flag). That CPU then allocates space for a
daughter and starts copying its instructions to the daughter.

6

It turns out that three times the average time-slice size is
just enough time to copy all of the instructions to the daugh-
ter. So, by the time the slice is over the daughter is complete.
After the slice ends, the next CPU performs adivide. Unlike
the firstdivide, which generated an error because no daughter
had yet been allocated, the seconddivide completes correct-
ly. The daughter for the seconddivide is actually the daughter
created by the first CPU. After thedivide, the CPU then allo-
cates another daughter and copies the genome to the daugh-
ter’s space. This process continues for all eight CPUs, each of
which (except for the last one) generates another daughter.

Unfortunately the aforementioned behavior was not de-
sired. The creatures had serialized the parallel CPUs (since
they are simulated in a serial fashion in Tierra) and used each
CPU to generate its own daughter. They had taken a suppos-
edly parallel process and ‘‘daisy-chained’’ its behavior to-
gether so that the beginning of one CPU’s execution finishes
up the execution of the previous CPU. On a real parallel com-
puter, such behavior is inefficient. However, since Tierra em-
ulates parallelism through time slicing, an algorithm which
serializes the activity of its several CPUs can avoid the cost
of calculating the offsets and coordinating their activity.

3.2 Fixing the bug(s)
After this bug was discovered, Tierra was modified so that

cycles did not accumulate between time-slices (i.e., any cy-
cles left in a time-slice upon execution of asplit would be
lost). This produced the desired behavior (daisy-chaining be-
tween parallel CPUs was prevented) and multi-cellular evo-
lution (as described in section 3) was observed.

Unfortunately, this modification also produced a side-ef-
fect which was not considered at that time. By zeroing out the
time-slice whenever asplit was performed, Tierra implicitly
imposed a large computational cost on additional parallelism.
Although an increase in parallelism from two to four CPUs
evolved, additional increases in parallelism were not ob-
served. Consequently, Tierra was modified to remove the
computational cost imposed on parallelism. Tierra now
switches between a creature’s CPUs after each instruction in
a time-slice rather than after each CPU’s time-slice com-
pletes. This corrects the original problem without imposing
the unwanted cost on parallelism. After this final change was
implemented, the evolution of additional parallelism (up to
the specified limit of 16 CPUs) was quickly observed. Space
does not permit us to discuss these new results here but they
will be presented in detail in a forthcoming paper.

4 Conclusions and a Glimpse Into the Future
This first experiment with evolution of parallel processes

has yielded fruitful results. Evolution has been able to spon-
taneously increase the level of parallelism, and effectively co-
ordinate the activities of the additional processors without
generating errors. However, differentiation between the pro-
cessors has taken the form of manipulating different data, not
executing different code. Essentially, this is a SIMD style of
parallelism, rather than the more interesting MIMD parallel-
ism that we hope to evolve in the future. Yet, given the nature
of the problem at hand (copying a series of continuous bytes),
a SIMD solution is the most appropriate. In order to evolve
MIMD parallelism, where the different processors execute

different code while coordinating their activities, evolution
will have to be challenged with more complex problems.

From the biological perspective, the SIMD/MIMD dis-
tinction relates to the absence (SIMD) or presence (MIMD)
of differentiation between cells. In differentiated organisms,
different cell types express different suites of genes, which
correspond to executing different parts of the same code. It is
hoped that future digital organisms will evolve into complex
forms exhibiting both SIMD and MIMD parallelism. In order
to facilitate this evolution, protocols are being established to
permit communication between cells and individuals within
and between nodes of both real and virtual machines.

In order to challenge evolution with more complex prob-
lems, preparations are being made to create a large biodiver-
sity reserve for digital organisms distributed across the global
net [5]. Participating nodes will run a network version of
Tierra as a low-priority background process, creating a virtual
Tierran sub-net embedded within the real net. Digital organ-
isms will be able to migrate freely within the virtual net. Giv-
en that the availability of energy (CPU time) at each node will
reflect the activity patterns of the users, there will be selective
pressures for organisms to migrate around the globe in a daily
cycle, to keep on the dark side of the planet, and also to de-
velop sensory capabilities for assessing deviations from the
expected patterns of energy availability, and skills at navigat-
ing the net in response to the dynamically changing topology
of the net and patterns of CPU-energy availability.

5 Acknowledgments
The authors would like to thank Danny Hillis, David

Waltz, and the Santa Fe Institute for supporting this research.

The work of TSR was supported by grants CCR-9204339
and BIR-9300800 from the United States National Science
Foundation, a grant from the Digital Equipment Corporation,
and by the Santa Fe Institute, Thinking Machines Corp., IBM,
and Hughes Aircraft. This work was conducted while at:
Thinking Machines Corporation (KT), School of Life &
Health Sciences, University of Delaware (TSR), the Santa Fe
Institute (KT and TSR), and the ATR Human Information
Processing Research Laboratories (KT and TSR).

6 Bibliography
[1] Darwin, Charles. 1859.On the origin of species by

means of natural selection or the preservation of favored rac-
es in the struggle for life. Murray, London.

[2] Ray, T. S. 1991. An approach to the synthesis of life.
In: Langton, C., C. Taylor, J. D. Farmer, & S. Rasmussen
(eds),Artificial Life II, 371-408. Redwood City, CA: Addi-
son-Wesley.

[3] ______. 1994. An Evolutionary Approach to Synthet-
ic Biology: Zen and the Art of Creating Life.Artificial Life
1(1/2): 195-226.

[4] ______. In Press. Evolution, Complexity, Entropy,
and Artificial Life.Physica D.

[5] ______. In Press. Evolution of parallel processes in or-
ganic and digital media. In: D. Waltz (ed.),Natural and Arti-
ficial Parallel Computation. Philadelphia: SIAM Press.

